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ABSTRACT
The appeal of MapReduce has spawned a family of systems
that implement or extend it. In order to enable parallel
collection processing with User-Defined Functions (UDFs),
these systems expose extensions of the MapReduce pro-
gramming model as library-based dataflow APIs that are
tightly coupled to their underlying runtime engine. Express-
ing data analysis algorithms with complex data and control
flow structure using such APIs reveals a number of limita-
tions that impede programmer’s productivity.

In this paper we show that the design of data analysis lan-
guages and APIs from a runtime engine point of view bloats
the APIs with low-level primitives and affects programmer’s
productivity. Instead, we argue that an approach based on
deeply embedding the APIs in a host language can address
the shortcomings of current data analysis languages. To
demonstrate this, we propose a language for complex data
analysis embedded in Scala, which (i) allows for declarative
specification of dataflows and (ii) hides the notion of data-
parallelism and distributed runtime behind a suitable in-
termediate representation. We describe a compiler pipeline
that facilitates efficient data-parallel processing without im-
posing runtime engine-bound syntactic or semantic restric-
tions on the structure of the input programs. We present a
series of experiments with two state-of-the-art systems that
demonstrate the optimization potential of our approach.

1. INTRODUCTION
One can argue that the success of Google’s MapReduce

programming model [7] is largely due to its expressiveness
and simplicity. Exposing an API built around second-order
functions like map f and reduceh enables general-purpose
programming with collections via user-defined functions f
and h. At the same time, the semantics of map and reduce

alone (i.e., regardless of their UDF parameters) enable data-
parallelism and facilitate program scalability.

Vanilla MapReduce is a perfect fit for generalized process-
ing and aggregation of a single collection of complex objects,
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but programmers hit a barrier when trying to express more
complex programs. A well-known example is coding a join in
a MapReduce framework like Hadoop, which would require
either encoding lineage in the map output or using auxiliary
primitives like a distributed cache. Committing to either of
these strategies would mean hard-coding a join paralleliza-
tion strategy such as a repartition or a broadcast in the user
code. This may cause performance degradations when the
relative size of the two inputs changes. Moreover, algorithms
for deep data analysis are characterized by non-trivial data
and control flow structure. Again, a näıve approach where
this structure is realized as a separate “driver” program ne-
glects substantial optimization potential.

To overcome these limitations without sacrificing the ben-
efits of seamless integration of UDFs and driver logic in a
general-purpose host language like Java or Scala, projects
like Cascading [1], HaLoop [8], SCOPE [14], Spark [35], and
Stratosphere/Flink [6] have proposed various extensions of
the MapReduce model. The bulk of these extensions facili-
tate one of following:

• Rich dataflow APIs. This includes providing more
second-order constructs (e.g. cogroup, cross, join)
as well as means to arrange them in an unrestricted
way to allow advanced dataflows [1, 6, 14, 35].

• Support for non-trivial data and control flow.
This includes primitives for efficient data exchange be-
tween the driver and the UDFs, as well as primitives
for control flow (e.g. iterations) [8, 18, 35].

In each of these languages, these primitives directly corre-
spond to runtime features, which leads to significant perfor-
mance improvement. This evolution, however, also has its
downsides. A critical look from a programmer’s perspective
reveals a new set of problems. To highlight them we use two
code snippets showing the main loop of the k-means cluster-
ing algorithm implemented in Spark (Listing 1) and Flink
(Listing 2).

Broadcast Variables. First, to find the nearest centroid
for each point, both implementations use a map over the set
of points (line 4): the findNearestCntrd UDF matches a
point p against each centroid c and emits the (c, p) pair
with minimal distance between them. To make the cur-
rent set of centroids available to all UDF instances, both
implementations use a special “broadcast” primitive which
minimizes the shipping cost for read-only variables (line 10
for Spark, line 4 for Flink). The decision when to use this
primitive is left to the programmer. Certainly, thinking



Listing 1: Spark k-means (simplified)

1 ... // initialize
2 while (theta) {
3 newCntrds = points
4 .map(findNearestCntrd)
5 .map( (c, p) => (c, (p, 1L)) )
6 .reduceByKey( (x, y) =>
7 (x._1 + y._1, x._2 + y._2) )
8 .map( x => Centroid(x._1, x._2._1 / x._2._2) )
9

10 bcCntrs = sc.broadcast(newCntrds.collect())
11 }

Listing 2: Flink k-means (simplified)

1 ... // initialize
2 val cntrds = centroids.iterate(theta) { currCntrds =>
3 val newCntrds = points
4 .map(findNearestCntrd).withBcSet(currCntrds, "cntrds")
5 .map( (c, p) => (c, p, 1L) )
6 .groupBy(0).reduce( (x, y) =>
7 (x._1, x._2 + y._2, x._3 + y._3) )
8 .map( x => Centroid(x._1, x._2 / x._3) )
9

10 newCntrds
11 }

about such runtime aspects is a source of distraction that
affects productivity, especially when working on complex al-
gorithms. It is therefore desirable that they be hidden from
the developer and handled transparently in the background.

Partial Aggregates. Second, the code for computing the
new centroids is distributed across three different UDFs: ex-
tending the (c, p) tuple with an extra count = 1 (line 5),
grouping the result triples by c and summing up the sum and
count values (line 6), and, finally, computing the new mean
as the ratio of the two aggregates (line 8). The reason for
this verbosity is the same across all data-parallel systems:
computations that can be pushed behind a grouping opera-
tion have to be identified as such explicitly through special
language primitives (e.g., combine in MapReduce, reduce-
ByKey in Spark, and reduce in Flink). For example, putting
the centroid computation in a single UDF:

h : (m, pts) 7→ (m, sum(pts)/count(pts)) (Ctrds)

would result in execution plans that materialize the groups
before they are aggregated in a maph application. This
would impact both resource usage and performance, as shuf-
fling and merging partial aggregates requires less memory
and bandwidth than shuffling and merging the correspond-
ing partial groups. Indeed, one of the most important points
stressed in the programming guides of all languages is the
need to recognize and phrase such aggregations using the
corresponding construct. Again, we argue that optimiza-
tions tied to the execution model should be performed trans-
parently in the background.

Native Iterations. The third problem we highlight is con-
cerned with the form of loop primitives (line 2). While Spark
uses the native while loop of the host language (Scala),
Flink requires a dedicated iterate construct. The reason
for this difference is once more tied to the execution modes
employed by the two systems. Spark only supports acyclic
dataflows and realizes loops by lazily unrolling and evaluat-
ing dataflows inside the loop body. Flink, in contrast, has
native runtime support for iterations. This approach has
performance benefits, but requires special feedback edges in
the dataflow plans. Since these plans are constructed only
via API methods, the only way to expose native iterations is
with a dedicated higher-order construct like iterate. Ide-
ally, however, runtime and language aspects should be sep-
arated and programmers should be able to use a while loop
in both cases.

The aforementioned observations suggest a runtime-centric
evolution of these languages. Tied to the original decision
to embed them shallowly in the host language as pure li-
braries, this has, over time, caused a significant increase in
their complexity. This is apparent by the amount of prim-

itives tied to runtime features that can be found across all
languages at the moment.

In this paper, we argue that an approach based on deep
embedding will solve this problem and that taking a holistic
view over the abstract syntax tree of data analysis programs
at compile time would allow us to introduce several degrees
of freedom that will result in non-trivial program optimiza-
tion.

The contributions of this paper are summarized as follows:

• We propose Emma – a language for parallel data anal-
ysis that is deeply embedded in Scala. Emma compiles
data-analysis programs holistically using an intermedi-
ate representation (IR) based on [22]. This facilitates:

– Parallelism Transparency. Dataflows can be speci-
fied using for-comprehensions – a declarative syntax
akin to SQL which also natively supports nesting. Lan-
guage artifacts that suggest data-parallelism like the
algebraic (functional) style of dataflow assembly seen
today or the explicit movement of data between the
local and distributed runtime can be hidden from the
programmer.

– Advanced Optimizations. Comprehending nested da-
taflow expressions enables non-trivial algebraic opti-
mizations, like rewriting the centroids computation
from the form shown in Ctrds into the form seen
in Listings 1 and 2. In addition, a holistic view of
a data-analysis program as a mix of parallel datflows
and centralized control-flow allows for a range of phys-
ical optimizations.

• We present a compiler pipeline implemented in Scala
that can generate code for multiple runtime engines.

• We provide a set of experiments showing that our
compiler pipeline and optimizations enable declarative
specification of programs while matching the perfor-
mance of hand-coded programs on low level APIs.

The remainder of this paper is structured as follows. Sec-
tion 2 gives some necessary technical background. Section 3
presents the proposed language, while Section 4 sketches
the associated compiler pipeline and explains the steps we
take to realize the degrees of freedom listed above. Section 5
presents the results of an experimental evaluation of the pre-
sented ideas. Section 6 reviews related work, and, Section 7
summarizes and discusses ideas for future work.

2. PRELIMINARIES
This section first presents a set of desired properties for

data analysis languages (Section 2.1) and then reviews the
main concepts that lay the foundation for our work (Sec-
tion 2.2).



2.1 Desiderata
Our goal is to embed parallel dataflows in a host language

transparently and without sacrificing performance. Com-
plex rewritings require access to the full program at compile
time. To this end, we need an intermediate representation
that simplifies the rewriting process and provides means for
reasoning about optimization. Based on the problems ob-
served in the k-means excerpts for Spark and Flink, we for-
mulate the following list of desiderata for a language that
aims to facilitate advanced data analysis at scale.

D1 Declarative Dataflows. Formulating dataflows with
higher-order functions can be tedious because the prim-
itives (e.g. cogroup, combine, reduce) define the units
of parallelism explicitly. This impedes productivity by
forcing the programmer into constantly thinking about
data-parallelism. We believe that a more declarative
program specification should be preferred, and that the
language should ensure optimal parallel execution.

D2 Transparent Execution Engine. The notion of a
(secondary) parallel runtime running next to the (pri-
mary) host language runtime should be hidden from the
programmer. The decision to offload certain expressions
to the parallel runtime should be transparent.

To achieve D1, we need a declarative programming ab-
straction for parallel dataflows. One possible strategy is to
use an SQL dialect and quote SQL-like expressions (sim-
ilar to JDBC statements). Another strategy is to design
an API with fluent syntax on collections (similar to LINQ
[27] or Cascading [1]). In our language design, we keep the
collection type, but hide the manipulation primitives (e.g.,
cogroup, combine, reduce) behind high-level language fea-
tures with which users are familiar. To this end, we make use
of the fact that Scala, our host language of choice, natively
supports a variant of comprehension syntax – a declarative
construct that can be used for dataflow specification. Com-
prehension syntax is found, under different syntactic sugar,
in a growing number of languages (e.g. C# 3.0, Erlang,
Ruby, Haskell, Python, Perl 6).

To achieve D2, we have to detect and inject the necessary
calls to the parallel execution engine at compile time. Scala
macros [11] – a recent addition to Scala that allows meta-
programming at the level of abstract syntax trees – provide
tools to realize a compiler pipeline that implements D2 with-
out modifying the host language compiler. The details of the
proposed compiler pipeline are presented in Section 4.

2.2 Intermediate Language Representation
Our ultimate goal is to hide the notion of parallelism be-

hind simple, declarative abstractions. To achieve this with-
out sacrificing performance, we need to detect and optimize
dataflow expressions at compile time.

A straight-forward approach is to base the compiler logic
entirely on top of the IR provided by our host language
– Scala abstract syntax trees (ASTs). Reasoning about the
soundness and performing dataflow transformations directly
on top of Scala ASTs, however, can be tedious to follow and
cumbersome to implement.

Instead of following this path, we propose a layered in-
termediate representation where dataflow expressions found
in the original AST are converted and transformed into a

declarative, calculus-like representation called monad com-
prehensions. Monad comprehensions combine concepts from
functional programming and database systems under the
same theoretical framework and have already been exploited
as IR of database queries in the past [9, 20, 22].

For the discussion of monad comprehensions in the end of
this section (Section 2.2.3), we need to first introduce ab-
stract data types (ADTs) as a model for the structure and
the semantics of bags (Section 2.2.1), and structural recur-
sion as a model for computations on bags (Section 2.2.2).

2.2.1 Bags as Algebraic Data Types
The core abstractions provided by Flink – DataSet, Spark

– RDD1, Cascading – Collection and LINQ – IEnumerable
[27] represent a homogeneous collection with bag semantics
– i.e., elements that share the same type, do not have a
particular order, and duplicates are allowed. To motivate
our choice of intermediate representation, we first study the
structure and semantics of bags.

Bag Structure. We can use the theory of algebraic spec-
ifications to formally model the structure and semantics of
the type of bags [10, 17]. To specify bags algebraically (i.e.,
using functions), we first define a constructor algebra:

typeBag A = emp | cons x :A xs:Bag A (AlgBag-Ins)

The above definition states that the values of the poly-
morphic type Bag A – i.e., all bags with elements from A
– are identified with corresponding constructor application
trees. As the name suggests, these trees denote applications
of the constructor functions emp (which denotes the empty
bag), and cons (which denotes the bag where the element
x is added to the bag xs). For example, the bag of integers
{{2, 42}} is identified with the constructor application tree:

cons

2 cons

42 emp

Bag Semantics. By definition, constructor algebras like
AlgBag-Ins are initial and thereby, following Lambek’s
lemma [26], bijective. What does this mean? Essentially,
it means that the association between trees and values is
bidirectional – each constructor application tree txs repre-
sents precisely one bag value xs and vice versa. This poses
a problem, as it contradicts our intended semantics, which
state that the element order should be arbitrary. Using only
the algebra definition, we have {{2, 42}} 6= {{42, 2}} because
the corresponding trees are different. To overcome this prob-
lem, we must add an appropriate semantic equation:

consx1 consx2 xs = consx2 consx1 xs (EQ-Comm-Ins)

The equation states that the order of element insertion is
irrelevant for the constructed value. Based on this equation,
we can create an equivalence relation on trees and use the
induced tree equivalence classes [txs ] instead of the original
trees to ensure xs ↔ [txs ] bijectivity. In our running exam-
ple, substituting the trees for {{2, 42}} and {{42, 2}} in the
left- and right-hand sides of (EQ-Comm-Ins), correspond-
ingly, renders them equivalent and puts them in the same
equivalence class [ {{2, 42}} ].

1An acronym for Resilient Distributed Datasets.



Relevance for Data Management. An algebraic view on
bags is relevant from a database systems perspective. Con-
ceptually, the xs 7→ txs direction can be interpreted as a re-
cursive parser that decomposes a bag xs into its constituting
elements xi [20]. Essentially, the same logic is implemented
by the database scan operator. Indeed, we can realize a
simple iterator-based version of scan with the help of the
AlgBag-Ins constructors (using Scala syntax):

class Scan(var xs: Bag[A]) {
def next(): Option[A] = xs match {
case emp => Option.empty[A]
case cons(x, ys) => xs = ys; Some(x)

}
}

Union Representation. The constructors in AlgBag-Ins
impose a left-deep structure on the txs trees. There is, how-
ever, another algebra and a corresponding set of semantic
equations that encodes the same initial semantics by means
of general binary trees:

typeBag A = emp

| sng x :A

| uni xs:Bag A ys:Bag A

(AlgBag-Union)

uni xs emp = uni emp xs = xs (EQ-Unit)

uni xs (uni ys zs) = uni (uni xs ys) zs (EQ-Assoc)

uni xs ys = uni ys xs (EQ-Comm)

The emp operator creates the empty bag {{}}, sng x cre-
ates a singleton bag {{x}}, and uni xs ys creates the union
bag of xs and ys.

A translation from AlgBag-Ins to AlgBag-Union and
vice versa follows immediately from the initialilty property.
Bags modeled in AlgBag-Union representation, however,
are a more natural fit in scenarios where the bag contents
are distributed accross multiple nodes, as we will see in Sec-
tion 2.2.2. We therefore rely on AlgBag-Union for the
language presented in Sections 3 and 4.

2.2.2 Structural Recursion on Bags
The previous section described a conceptual model for the

structure of bags that identifies bag values with equivalence
classes of constructor application trees. We now describe
the principle of structural recursion – a method for defin-
ing functions on bags xs by means of substitution of the
constructor applications in the associated txs tree.

Basic Principle. Consider a case where we want to com-
pute the sum of the elements of a bag xs = {{3, 5, 7}}. We
can define this operation with a higher-order function called
fold which implements structural recursion on AlgBag-
Union-style trees:

// fold: structural recursion on union-style bags
def fold[A,B](e: B, s: A=>B, u: (A,A)=>B)

(xs: Bag[A]) = xs match {
case emp => e
case sng(x) => s(x)
case uni(ys,zs) => u(fold(e,s,u)(ys),fold(e,s,u)(zs))

}

The fold function takes three function arguments: e, s,
and u, substitutes them in place of the constructor applica-
tions in txs , and evaluates the resulting expression tree to

get a final value z ∈ B. To compute the sum of all elements,
for example, we use e = 0, s = id, and u = +:

uni

uni

sng

3

sng

5

uni

sng

7

emp

⇒

+

+

id

3

id

5

+

id

7

0

⇒ 15

In this case, each u-node represents the partial summation
of all integers occurring at the leafs below it.

Relevance for Parallel Data Management. Again, we
want to highlight the importance of this view on bag com-
putations from a data management perspective. Imagine a
scenario where xs is partitioned and distributed over two
nodes: xs1 = {{3, 5}} and xs2 = {{7}}. Conceptually, the
value is still xs = uni xs1 xs2, but the uni is evaluated only
if we have to materialize xs in a single node:

node1 node2

uni

uni

sng

3

sng

5

uni

sng

7

emp

If we need the xs only to apply a fold, we can push fold

argument functions to the nodes containing xsi, apply the
fold locally, and ship the computed zi values instead. In
general, e, s, and u do not form an initial algebra. This
implies that some loss of information occurs when evaluating
the substituted txs tree to z, and thereby that z is “smaller”
than txs . This is evident in the sum example – shipping
the partial sums zi is much more efficient than shipping the
partial bags xsi:

node1 node2

node3

� �

node1 node2

node3

� �

+

+

id

3

id

5

+

id

7

id

+

8 7

+

id

3

id

5

+

id

7

id

Well-Definedness Conditions. Under which conditions
is a fold well-defined? Since txs is an arbitrary tree from
[txs ], we want to ensure that the fold result is the same for
all equivalence class members. To achieve this, we impose
on e, s, and u the same equations as we did on emp, sng,
and uni in AlgBag-Union:

u(x , e) = u(e, x ) = x

u(x , u(y , z )) = u(u(x , y), z )

u(x , y) = u(y , x )

Fold Examples. The fold function provides a generic
mold for specifying operations on collections. Aggregation
functions like min, max, sum, and count, existential qualifiers
like exists and forall, as well as collection processing op-
erators like map, flatMap, filter, and join can be defined
using only fold instances.

More interestingly, map, flatMap, and filter together
with the Bag algebra itself constitute an algebraic structure



Listing 3: DataBag API

1 class DataBag[+A] {
2 // Type Conversion
3 def this(s: Seq[A]) // Scala Seq -> DataBag
4 def fetch() // DataBag -> Scala Seq
5 // Input/Output (static)
6 def read[A](url: String, format: ...): DataBag[A]
7 def write[A](url: String, format: ...)(in: DataBag[A])
8 // Monad Operators (enable comprehension syntax)
9 def map[B](f: A => B): DataBag[B]

10 def flatMap[B](f: A => DataBag[B]): DataBag[B]
11 def withFilter(p: A => Boolean): DataBag[A]
12 // Nesting
13 def groupBy[K](k: (A) => K): DataBag[Grp[K,DataBag[A]]]
14 // Difference, Union, Duplicate Removal
15 def minus[B >: A](subtrahend: DataBag[B]): DataBag[B]
16 def plus[B >: A](addend: DataBag[B]): DataBag[B]
17 def distinct(): DataBag[A]
18 // Structural Recursion
19 def fold[B](z: B, s: A => B, p: (B, B) => B): B
20 // Aggregates (aliases for various folds)
21 def minBy, min, sum, product, empty, exists, ...
22 }
23 class StatefulBag[A <: Key[K], K] {
24 // Stateful Conversion
25 def this(s: DataBag[A]) // DataBag -> StatefulBag
26 def bag(): DataBag[A] // StatefulBag -> DataBag
27 // Point-wise update (with and w/o update messages)
28 def update(u: A => Option[A]): DataBag[A]
29 def update[B <: Key[K]](messages: DataBag[B])
30 (u: (A, B) => Option[A]): DataBag[A]
31 }

known as monad. The next section describes a syntactic ab-
straction over monads that is ideally suited for the needs of
our intermediate language.

2.2.3 Monad Comprehensions
In order to describe the set of all pairs that satisfy a cer-

tain predicate p, one would most probably use set compre-
hension syntax:

{ (x, y) | p(x, y), x ∈ X, y ∈ Y }

Although monad comprehensions are not widely used by
data processing systems today, we believe that their con-
nection with data-parallel computations like fold and map

makes them a natural fit for large-scale processing.

Anatomy. Following Grust’s notation and nomencla-
ture [20], a monad comprehension has the general form:

[[ e | qs ]]T (MC)

Here, T is the monad type, e is called the head of the
comprehension, and qs is a sequence of qualifiers. Qualifiers
can be either generators of form x ← xs, or filters of form
p xi. For instance, a join expression xs ./p ys can be written
in comprehension syntax as:

[[ (x, y) | x← xs, y ← ys, px y ]]Bag (MC-Ex1)

The above expression should be “comprehended” intu-
itively as follows: for each x from xs and y from ys where
px y is true, emit (x, y) tuples and use them to construct an
AlgBag-Union tree that represents the result bag.

Comprehending Folds. The comprehension language dis-
cussed so far allows us to formally capture the Select-From-
Where fragment of the relational algebra using a declarative
syntax similar to SQL and the relational calculus. Grust also
suggested a way to represent folds as comprehensions over

identity monads with zero. Continuing the example from
above, we can represent the aggregation γSUM y(xs ./p ys) as:

[[ y | x← xs, y ← ys, px y ]]fold(0,id,+) (MC-Ex2)

The above expression should be “comprehended” intu-
itively as follows: for each x from xs and y from ys where
px y is true, emit the y’s and use them to construct and
evaluate a (0, id,+)-tree that represents the resulting sum.

Relevance for Data-Parallel Languages. From a pro-
grammer’s perspective, the main advantage of monad com-
prehensions is their declarative syntax. We make use of this
feature in the design of our language (Section 3.1). From a
compiler’s perspective, the main advantage of monad com-
prehensions is the fact that they allow nesting. For example,
the head expression e of a comprehension c1 may contain
another comprehension c2 which refers to variables bound
in c1. This allows us to formulate and execute non-trivial
unnesting rewrites (Section 4.2).

3. LANGUAGE DESIGN
As illustrated in Section 1, the current set of languages for

data-parallel analysis with UDFs have a number of issues. In
this section, we present Emma – a novel language designed
against the desiderata outlined in Section 2.1 that resolves
these issues.

3.1 Programming Abstractions
The main abstraction of our language is similar to the

one used by Spark and Flink – a type that represents homo-
geneous collections with bag semantics called DataBag.The
DataBag abstraction API can be found in Listing 3. In the
following, we discuss the supported DataBag operators.

Declarative SPJ Expressions. The reader may notice
that some basic binary operators like join and cross are
missing from the API. This is a language design choice; in-
stead, we just provide the monad operations map, flatMap,
and withFilter mentioned in Section 2.2.2. Through that,
we implicitly enable a flavor of monad comprehensions
known as for comprehensions in Scala’s concrete syntax (see
§6.19 in [2]). Select-Project-Join expressions like the one
in MC-Ex1 can be then written in a declarative way:

val zs = for (x <- xs; y <- ys; if p(x,y)) yield (x,y)

Folds. Native computation on DataBag values is allowed
only by means of structural recursion. To that end, we ex-
pose the fold operator from Section 2.2.2 as well as aliases
for commonly used folds (e.g. count, exists, minBy). Sum-
ming up a bag of numbers, for example, can be written as:

val z = xs.fold(0, x => x, (x, y) => x + y)
val z = xs.sum() // alias for the above

Nesting. The grouping operator introduces nesting:

val ys: DataBag[Grp[K,DataBag[A]]] = xs.groupBy(k)

The resulting bag contains groups of input elements that
share the same key. The Grp type has two components – a
group key: K, and group values: DataBag[A]. This is funda-
mentally different from Spark, Flink, and Hadoop MapRe-
duce, where the group values have the type Iterable[A] or
Iterator[A]. An ubiquitous support for DataBag nesting al-



lows us to hide primitives like groupByKey, reduceByKey,
and aggregateByKey, which might appear to be the same,
behind a uniform “groupBy and fold” programming model.
To group a bag of (a, b) tuples by a and compute the count
for each group, for example, we can write:

for (g <- xs.groupBy(_.a)) yield g.values.count()

Due to the deep embedding approach we commit to, we
can recognize nested DataBag patterns like the one above at
compile time and rewrite them into more efficient equivalent
expressions using primitives like aggregateByKey (for more
details, see Section 4.2.2).

Interfacing with DataBags. To interface with the core
DataBag abstraction, the language also provides operators
to read and write data from a file system (line 5, Listing 3),
as well as convertors for Scala Seq types (line 2).

Stateful Bags. A range of algorithms require iterative bag
refinement via point-wise updates. In domains where these
algorithms occur often, this manifests as domain-specific
programming models like “vertex-centric” for graph process-
ing. In Emma, we capture these cases in a domain-agnostic
way through a core abstraction for “stateful” bags. Conver-
sion between (stateless) DataBag and StatefulBag instances
is enforced explicitly by the user (lines 25-26). The elements
of the StatefulBag can be updated in-place with a UDF
which either operates on an element alone (line 28) or takes
an associated update message that shares the element key
(line 29). The UDF decides whether to change an element
and optionally returns its new version as an Option[A] in-
stance. Modified elements are transparently merged in the
current bag state and forwarded to the client as a DataBag[A]
representing the changed delta. This allows native integra-
tion of both naive and semi-naive iterative dataflows in the
core language (see the graph algorithms in Appendix A).

Coarse-Grained Parallelism Contracts. Data-parallel
dataflow APIs typically provide data-parallelism contracts
at the operator level (e.g. map for element-at-a-time, join for
pair-at-a-time, etc.). Emma takes a different approach as it’s
DataBag abstraction itself serves as a coarse-grained contract
for data-parallel computation. Emma gives the promise that
it will (i) discover all maximal DataBag expressions in a code
fragment, (ii) rewrite them logically in order to maximize
the available degrees for data-parallelism, and (iii) take a
holistic approach while translating them as concrete data-
parallel dataflows.

Host Language Execution. The operators presented in
Listing 3 are not abstract. The semantics of each opera-
tor are given directly as method definitions in Scala. This
feature facilitates rapid prototyping, as it allows the pro-
grammer to incrementally develop, test, and debug the code
at small scale locally as a pure Scala program.

3.2 Example: K-Means Revisited
To get a feeling for the language, we show a complete

example of Lloyd’s algorithm for k-means clustering in List-
ing 4. The core algorithm logic is implemented in lines 8-42.
As the title of the paper promises, nothing in this range of
lines suggests that the code will run in parallel. The pro-
grammer can focus on the core algorithm logic and use the
native Scala implementation of our DataBag abstraction to
debug and refine the code incrementally.

When the algorithm is ready, the code needs to be
wrapped in special parallelize brackets (line 6). The

Listing 4: k-means in Emma

1 // define schema
2 case class Point(id: Int, pos: Vector[Double])
3 case class Solution(cid: Int, p: Point)
4

5 // define algorithm
6 val algorithm = parallelize {
7 // read initial points
8 val points = read(inputUrl, CsvInputFormat[Point])
9 // initialize centroids

10 var ctrds = DataBag(for (i <- 1 to k) yield /*...*/)
11

12 // iterate until convergence
13 var change = 0.0; var epsilon = /* ... */;
14 while (change > epsilon) {
15 // compute new clusters
16 var clusters = (for (p <- points) yield {
17 val c = ctrds.minBy(distanceTo(p)).get
18 Solution(c.id, s.p)
19 }).groupBy(_.cid)
20 // compute new centroids
21 val newCtrds = for (clr <- clusters) yield {
22 val sum = clr.values.map(_.p.pos).sum()
23 val cnt = clr.values.map(_.p.pos).cnt()
24 Point(c.key, sum / cnt)
25 }
26 // compute the total change in all centroids
27 change = {
28 val distances = for (
29 x <- ctrds;
30 y <- newCtrds; if x.id == y.id) yield dist(x, y)
31 distances.sum()
32 }
33 // use new centroids for the next iteration
34 ctrds = newCtrds
35 }
36

37 // compute and write final solution
38 write(outputUrl, CsvOutputFormat[Solution])(
39 for (p <- points) yield {
40 val c = ctrds.minBy(distanceTo(p)).get
41 Solution(c.id, s.p)
42 })
43 }
44 // run on a parallel runtime (e.g. Spark, Flink)
45 algorithm.run(runtime.EngineX(host, port))

bracketed code is rewritten by a Scala macro at compile
time. The macro identifies maximal DataBag expressions
(marked with blue dashed rectangles), rewrites them, and
transforms them to parallel dataflow assembly code. The
resulting program is wrapped in an Algorithm object that
can be executed on different runtime engines (line 45). In the
next section, we discuss the compiler pipeline implemented
by the parallelize macro in detail.

3.3 Host Language Choice
The decision to base our implementation on Scala is moti-

vated by purely pragmatic reasons: (i) Scala supports for-
comprehensions in its concrete syntax; (ii) the runtimes
we target have Scala APIs, and (iii) complex compile-time
rewrites are feasible through Scala macros. The point we
want to stress in this paper, however, are the benefits of com-
prehensions over bags in Union-representation as core ab-
straction for data-parallel programming: exposing this ab-
straction in the concrete language syntax facilitates declar-
ativity and nesting. At the same time, promoting compre-
hensions to first-class citizens at compile-time allows a range
of non-trivial optimizations. These optimizations are either
not attainable or cumbersome to implement by state-of-the-
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art parallel dataflow APIs. In theory, however, any language
which satisfies the above requirements can be used as a host-
language for a similar compiler pipeline.

4. COMPILER PIPELINE
The basic steps taken by the parallelize macro are de-

picted in Figure 1. At step (i), the compiler processes the
user code AST and constructs comprehension views over
all data-parallel expressions (i.e., operations on DataBag in-
stances). At step (ii), the AST and the associated com-
prehension views are rewritten logically in order to remove
redundant group materializations and maximize the poten-
tial for data-parallelism. At step (iii), the rewritten com-
prehensions are transformed as algebraic terms over higher-
order functions, effectively an abstract version of the syntax
accepted by the underlying target runtimes. The original
expressions are then substituted with calls to a just-in-time
dataflow compiler. At runtime, the compiler assembles and
executes the actual dataflows out of the derived higher-order
terms. Holistic decisions about physical execution aspects
can be thereby deferred to a point where the execution con-
text is available. Although our approach is currently based
on heuristics, the strategy allows us to introduce cost-based
decisions in the future. In the following sections, we describe
the most important aspects of each step.

4.1 Recovering Comprehensions
In the first step of the proposed compiler pipeline we con-

struct an auxiliary view over all maximal DataBag expres-
sions in the input AST.

Desugaring Comprehensions. As already stated, we use
monad comprehensions as core abstraction both in the pro-
gramming language (to facilitate declarativity) and in the
auxiliary view during compilation (to facilitate program re-
write). Unfortunately, Scala’s for comprehensions are spec-
ified as syntactic sugar which“desugars”as a chain of the un-
derlying monad operations (map, flatMap, and withFilter)
at AST construction time. For example, the for compre-
hension from line 28 is desugared into the equivalent term:
val distances = ctrds
.flatMap(x => newCtrds
.withFilter(y => x.id == y.id)
.map(y => dist(x, y)))

Moreover, the programmer can also hard-code calls of map,
flatMap, or withFilter in the input (e.g., the map calls used
for projection in lines 22 and 23). To handle these situations,
we propose a two step approach that first identifies maximal
terms that can be comprehended, and then constructs and
normalizes the associated comprehension for each such term.

Finding Comprehendable Terms. The algorithm for
finding maximal comprehendable terms works as follows:
we first collect all function application nodes that belong

to the DataBag API, and then, based on the possible occur-
rence patterns defined by the for comprehension desugar-
ing scheme, we merge all terms that will be comprehended
with their parent. The statement in line 21 of Listing 4, for
instance, will produce three terms: one for the outer for

comprehension that binds the clr variable, and two for the
aggregates on lines 22 and 23. The algorithm returns a set
of nodes (corresponding to subtrees in the AST), which we
see as comprehensions in order to optimize. Constructing a
comprehension for these subtrees is broken into three sub-
steps, namely: inlining, resugaring, and normalization.

Inlining. As a preprocessing step, we also inline all value
definitions whose right-hand side is comprehended and ref-
erenced only once. This results in bigger comprehensions
and increases the chances of discovering and applying com-
prehension level rewrites in the subsequent steps.

Resugaring Comprehensions. In the first step, we re-
cursively traverse each term and “re-sugar” comprehensions
using the following translation scheme (MC-1):

t′. map(x 7→ t)⇒ [[ t |x←MC-1(t′) ]]Bag

t′. withFilter(x 7→ t)⇒ [[ x |x←MC-1(t′), t ]]Bag

t′. flatMap(x 7→ t)⇒ flatten [[ t |x←MC-1(t′) ]]Bag

t′. fold(e, s, u)⇒ [[ x |x←MC-1(t′) ]]fold(e,s,u)

Normalization. In the second step, we normalize the re-
sulting comprehensions using the following set of rewrite
rules:

flatten [[ [[ e | qs ′ ]] | qs ]] ]]T ⇒ [[ e | qs, qs ′ ]]T

[[ t | qs, x← [[ t′ | qs ′ ]], qs ′′ ]]T ⇒ [[ t[t′/x] | qs, qs ′, qs ′′[t′/x] ]]T

[[e | qs, [[p | qs ′′ ]]exists, qs ′ ]]T ⇒ [[e | qs, qs ′′, p, qs ′ ]]T

The first of these rules unnests a nested (inner) compre-
hension occurring in a (outer) comprehension head, while
the second unnests a comprehension occurring in a genera-
tor. It is interesting to note that the second rule performs
an optimization known as ”fusion” at compile time. This op-
timization ensures that map and fold chains are compacted
and executed in a single task and is otherwise achieved (at
the expense of virtual function calls) via pipelining and oper-
ator chaining by the runtime. Finally, the third rule unnests
exists-style nested comprehensions as shown by Grust in
[22], and can be seen as a generalization of Kim’s type N
optimization [25].

Example. The distances expression from line 28 will
be inlined in distances.sum() at line 31, and the func-
tional term shown earlier will be “re-sugared” with the MC-1

scheme to create an associated comprehension:

flatten [[

[[ dist(x, y) |
y ← [[ y | y ← ctrds, x.id = y.id ]] ]] |

x← newCtrds ]]sum

After normalization, the comprehension will look like:

[[ dist(x, y) |x← newCtrds, y ← ctrds, x.id = y.id ]]sum

The comprehended parts of the k-means code are high-
lighted with dashed rectangles on Listing 4.

Comprehension Views. The final result of these series
of operations is a secondary layer imposed on top of the



AST which serves as a prism that provides “comprehension
views” over all DataBag expressions. This view is the driv-
ing intermediate representation for the rest of the compiler
pipeline.

4.2 Logical Optimizations
The derived comprehensions can be used as a basis for

various logical optimizations that maximize the degree of
data-parallelism exposed to the dataflow runtime. In this
section, we first review the impacts of the unnesting step
described in Section 4.1. Upon that, we show how an alge-
braic law known as banana-split facilitates the application
of fold-build-fusion upon generated groups irrespective of
the number and placement of group consuming folds. This
provides a sound rewrite theory which enables transparent
insertion of partial aggregates whenever possible.

4.2.1 Unnesting
Imagine a situation where a collection of emails has to be

cross-checked against a list of blacklisted servers. One way
to write this is a filter over emails which uses the blacklisted
servers as a broadcast variable (in Spark syntax):

val bl = sc.broadcast(...) // broadcast blacklist
emails.filter(e => bl.value.exists(_.ip == e.ip))

Hardcoding this dataflow, however, might become a bot-
tleneck if the number of worker nodes or the size of the black-
list increases. In Emma, the programmer can still write the
very same expression:

// as for-comprehension
for (e <- emails; if bl.exists(_.ip == e.ip) yield e
// or directly in de-sugared form
emails.withFilter(e => bl.exists(_.ip == e.ip))

The exists-unnesting rule presented in Section 4.1 will en-
sure that the expression is flattened and seen as a (logical)
join (see Section 4.3). The dataflow compiler can then de-
cide whether to use a broadcast or a re-partition strategy
in order to evaluate the join node at runtime. Another in-
stance of this optimization (TPC-H Query 4) is depicted and
discussed in Appendix A.

4.2.2 Fold-Group Fusion
An algebraically grounded view of all dataflows in an in-

put program allows us to derive and implement non-trivial
logical optimizations. The most important of these opti-
mizations is fold-group fusion. Candidates for rewrites are
groupBy terms where the group values are exclusively used
as fold inputs. When the optimization is triggered, it re-
places the groupBy with an aggBy, which fuses the group
construction performed by the groupBy with the subsequent
fold applications on the constructed group values. In terms
of the APIs discussed in Section 1, this equals to replacing
a groupBy with an equivalent reduceByKey when possible.

Detecting Candidates for Rewriting. The rewriting
process goes as follows. First, we iterate over all compre-
hensions where at least one generator binds to a groupBy

expression. In the k-means example, such a comprehension
is only found for the (inlined) newCtrds expression at line 21:

[[ t | clr ← [[ . . . ]].groupBy(x 7→ x .cid) ]]Bag

We then look into the AST subtree at t and check whether
all occurrences of the group values are enclosed in a com-
prehended term. If this is the case, and values appears

only in generators for comprehended fold terms, the opti-
mization can be triggered. This is the case in the newCtrds

expression, as clr.values occurs only in the following two
comprehensions:

[[ x .p.pos |x← clr .values ]]fold(zeros,x 7→x,(x,y)7→x+y) (Sum)

[[ x .p.pos |x← clr .values ]]fold(0,x 7→1,(x,y)7→x+y) (Cnt)

The rewrite triggered by the optimization is derived from
two generic algebraic equivalences – banana split and fold-
build fusion that hold for any ADT and its associated folds.

Banana Split. The first law that enables fold-group fusion
essentially says that a tuple of folds can be rewritten as a
fold over tuples [28]. Generally speaking, the law general-
izes the machinery behind loop fusion for arbitrary recursion
schemes.2 For example, the two fold comprehensions above
can be substituted by a single comprehension which folds
pairs by pairwise application of the original functions:

f1 × f2 : (x1, x2) 7→ (f1(x1), f2(x2))

The (e1, s1, u1) triple thereby comes from Sum and oper-
ates on the first component, while (e2, s2, u2) comes from
Cnt and operates on the second:

[[ x .p.pos |x← clr .values ]]fold(e1×e2,s1×s2,u1×u2)

Fold-Build Fusion. The second law enables a rewrite
which in functional programming languages is commonly
known as deforestation. Intuitively, the law states that an
operation that constructs an ADT value by means of its ini-
tial algebra constructors can be fused together with an oper-
ation that computes something from that value by means of
structural recursion. For fold-group fusion, we want to fuse
the groupBy operator, which constructs the group values

with the single fold derived after the banana-split applica-
tion. To illustrate the mechanics of the rewrite, we need to
take a conceptual view on groupBy as a comprehension:

[[ (k(x), [[ y | y ← xs, k(x) = k(y) ]]Bag) |x← xs ]]Set

With this conceptual view, the groupBy operator is inter-
preted as two nested comprehensions. The outer compre-
hension constructs the set of groups, each identified with a
group key k(x). The inner comprehension selects all xs el-
ements that share the current group key to construct the
group values. For fold-group fusion, we conceptually re-
place the Bag algebra that constructs the values with the
fold algebra which evaluates them:

[[ (k(x), [[ y | y ← xs, k(x) = k(y) ]]fold(...)) |x← xs ]]Set

Rewriting. In practice, however, we realize fold-group fu-
sion by substituting the groupBy operator with an aggBy

operator. Instead of a (key , values) pair, this operator pro-
duces a tuple of aggregates (key , a1, . . . , an). In our running
example, a1 will hold the result of Sum, and a2 the result of
Cnt:

[[ t′ | clr ← [[ . . . ]].aggBy(x 7→ x .cid ,

7→ (zeros, 0),

x 7→ (x, 1),

(x, y) 7→ (x1 + y1, x2 + y2) ) ]]Bag

2Loop fusion can be seen as the law instance when the un-
derlying ADT is a collection in AlgBag-Ins representation.



[[ f x |x← xs ]] ⇒
map f xs

(Map)

flatten [[ f x |x← xs ]] ⇒
flatMap f xs

(FlatMap)

[[ t | qs, x← xs, qs1, p x, qs2 ]] ⇒
[[ t | qs, x← filter p xs, qs1, qs2 ]]

(Filter)

[[ t | qs, x← xs, y ← ys,

qs1, k1 x = k2 y, qs2 ]] ⇒
[[ t[v.x/x][v.y/y] | qs, v ← join k2 k2 xs ys,

qs1[v.x/x][v.y/y], qs2[v.x/x][v.y/y] ]]

(EqJoin)

[[ t | qs, x← xs, y ← ys, qs1 ]] ⇒
[[ t[v.x/x][v.y/y] | qs, v ← cross xs ys,

qs1[v.x/x][v.y/y] ]]

(Cross)

Figure 2: Combinator rules for dataflow construction.

To compensate for the rewrite in the original head expres-
sion t, we also substitute the terms associated with the Sum
and Cnt comprehensions with a1 and a2, correspondingly,
and obtain a new head t′.

4.3 Code Generation
As a result of the logical optimizations from Section 4.2,

we obtain a modified AST and comprehension view. In the
last phase of the compilation process, we use those to con-
struct an AST that delegates the execution of the compre-
hended terms to a parallel runtime. The process is real-
ized in two steps: (i) generating abstract dataflows for the
comprehensions at the top-most level, and (ii) injecting glue
code to evaluate the abstract dataflow plans just-in-time and
embed the results in the surrounding driver AST.

4.3.1 From Comprehensions to Dataflows
In the first step, we use the comprehension views to derive

abstract dataflow expressions close to the form expected by
the parallel runtime. Similar to the normalization described
in Section 4.1, this operation is also rule-based and follows
rather closely the approach suggested by Grust in [20, 22]. In
this approach, each rule matches two or more elements from
a comprehension and replaces them with a single, closed
form expression called a combinator. The rewrite continues
until all comprehension elements are translated, and returns
a combinator tree as an end result.

Combinators as Target API. In the original work, the
author alludes to the correspondence between the inferred
combinators and the logical operators supported by the tar-
geted query engine. A similar correspondence can be drawn
to the higher-order functions supported by the targeted par-
allel dataflow engines. Consequently, the resulting combi-
nator trees effectively represent an abstract version of the
parallel dataflows we want to execute.

Rewrite Rules. The set of combinator rules for dataflow
construction that we use is listed in Figure 2. The rewrite
process implements the state machine depicted in Figure 3a.
At each state, the machine tries to apply any of its associ-
ated rewrite rules. If a match is found, the state transitions
along the solid edge; if not, it follows the dashed edge. This
heuristic strategy ensures that filters are pushed down as
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Figure 3: (a) Combinator rewrite process; (b) Data motion
patterns in parallel dataflow engines

much as possible in the constructed dataflow tree, followed
by joins, and then by cross products.

In principle, all but the I/O and the type conversion op-
erators listed in Listing 3 can be defined in terms of compre-
hensions (we already saw this for groupBy in Section 4.2.2).
This, however, appears to have more downsides than bene-
fits. On the one hand, it forces us to extend the set of com-
binator rules in order to re-discover the comprehended oper-
ators. On the other hand, due to their particular structure,
adding these comprehensions to the intermediate represen-
tation does not increase the potential for logical optimiza-
tions. To simplify the translation process, at the moment we
just substitute non-comprehended operators with equivalent
combinator expressions.
Example. The abstract dataflow that computes newCtrds

at line 21 looks as follows:

points

. map(p 7→ {
Solution(ctrds.minBy(distanceTo(p)).get .id , p)

})
.aggBy(x 7→ x .cid , (e1 × e2, s1 × s2, u1 × u2))

. map(clr 7→ {
Point(clr .key , clr .a1/clr .a2)

})

Since the combinators in the derived abstract dataflows
have a corresponding operator in each runtime, generating
a concrete dataflow boils down to simple node substitution
in the abstract dataflow tree. However, most dataflow APIs
allow the user to give additional physical hints (e.g. with re-
spect to partitioning, caching, or algorithm selection), and
ideally these should also be set as part of the translation.
Since such physical aspects depend on the execution environ-
ment, we trigger the actual dataflow generation just-in-time
at runtime. To do this, we emit Scala code that assembles
an abstract dataflow with reified UDFs so we can access
their ASTs at runtime. The dataflow is then wrapped in a
thunk object which represents the actual result (see the next
section) and is compiled and evaluated lazily at runtime.

4.3.2 Transparent Data Motion
With the steps described so far, we already can gener-

ate and execute dataflows that read and write data from a
storage layer and are independent from the enclosing code.
Most algorithms for complex data analysis, however, have
more complex data dependencies.

Conceptually, data can be produced and consumed by



three different agents – the driver code (DRV), the paral-
lel dataflows (DFL), and the dataflow UDFs. The diagram
in Figure 3b illustrates the dependencies that a typical da-
taflow engine supports and the API primitives that realize
them. Connecting dataflow sources and sinks with code that
runs in the driver is facilitated in Spark by parallelize

and collect calls, correspondingly. In addition, driver vari-
ables can be made available to all dataflow UDFs with a
broadcast primitive. Equivalents for parallelize, broad-
cast and collect can be also found in Flink. Data depen-
dencies within the same agent are trivial and do not require
special treatment during compilation.

Driver to UDFs. To integrate data motion between the
driver and the UDFs, we check the functions in the dataflows
generated in Section 4.3.1 for unbound variables. For each
unbound variable, we inject a corresponding broadcast call
and modify the UDF code accordingly. An example of such
unbound variable is the ctrds used in the first mapper for
the newCtrds dataflow.

Driver to Dataflows. To integrate data motion between
the driver and the dataflows, we wrap the dataflows gener-
ated in Section 4.3.1 in special objects called thunks [16]. A
thunk object of type Thunk[A] wraps an abstract dataflow
that results in a value of type A. Traditionally, a thunk has
just one method – force, which forces execution, memoizes
the result, and returns it to the client. To adapt the concept
to our needs, however, we also add a dataflow method, as in
some situations we want to access the head of the abstract
dataflow instead of its actual result.

We define both force and dataflow as implicit converters.
The Scala type checker then automatically injects them in
expressions which expect a parameter of type A or DFL[A],
but receive an argument of type Thunk[A] instead.

4.4 Physical Optimizations
The combination of a full view over the program AST

at compile-time with a just-in-time compilation approach
for the constructed abstract dataflows opens potential for
a range of physical optimizations. In the following para-
graphs, we briefly present two such optimizations together
with naive strategies to apply them. Refining the pysical
aspects of the language compiler (e.g. with a cost-based
optimizer) is one our areas for future research.

Caching. In Spark and Flink, RDD and DataSet transfor-
mations are lazy, and the decision upon materialization of
intermediate results is left to the client. An open question in
this situation is when to do this and when not. As an aggre-
sive heuristic strategy, at the moment we force the evalua-
tion and caching of dataflow results that are referenced more
than once (e.g. inside a loop or within multiple branches)
in the compiled algorithm.

Partition Pulling. Execution of certain operators (e.g.
equi-join, group) in a parallel setting usually enforces
hash partitioning on their inputs. Partitionings that can
be reused by a certain dataflow (e.g. on a join or group key)
can be spotted by Emma and enforced earlier in the pipeline.
More precisely the view over the control flow structure of the
driver program allows us to detect and pull enforced parti-
tioning behind control flow barriers in order to minimize
the number of overall shuffles in an algorithm. The heuris-
tic we suggest at the moment is to (i) compute the sets of
interesting partitionings for each dataflow result based on its

Algorithm

Optimization
Unnesting

Group
Fusion

Cache
Partition
Pulling

Data-Prl. Workflow X × X X
k-means × X X ×
PageRank × X X ×
TPC-H Q1 × X × ×
TPC-H Q4 X X × ×

Table 1: Programs presented in the experiments and opti-
mizations that apply to them (marked by X).

Listing 5: Selecting a Spam Email Classifier in Emma

1 val emails = read(/* from file */).map(extractFeatures)
2 val blacklist = read(/* from file */)
3 var minHits = -1L
4 var minClassifier = null
5

6 // for each different classifier
7 for (c <- SpamClassifiers) {
8 // find out which of the emails are spam
9 val nonSpamEmails = for (

10 email <- emails;
11 if not c.isSpam(email))
12 yield email
13

14 // non-spam emails coming from a blasklisted server
15 val nonSpamFromBlServer = for (
16 email <- nonSpamEmails;
17 if blacklist.exists(_.ip == email.ip))
18 yield email
19

20 // track the classifier which leads to minimum count
21 if (nonSpamFromBlServer.count() < minHits) {
22 minHits = nonSpamFromBlServer.count()
23 minClassifier = c
24 }
25 }

occurence in other dataflow inputs, and (ii) enforce a par-
titioning at the producer site based on a weighted scheme
that prefers consumers occuring within a loop structure. A
cost-based approach is likely to produce better results in this
situation, but goes beyond the scope of our current work.

5. EVALUATION
In this section we evaluate the effectiveness of the gener-

ated code that results from Emma’s compiler pipeline. We
consider a set of programs coming from different domains,
namely: a data-parallel workflow (Section 5.1), iterative da-
taflows and relational queries (Section 5.2). Table 1 shows
a list of the implemented algorithms and the optimizations
that apply to each of them.

Experimental Setup. We implemented a prototype of the
compiler pipeline presented in Section 4 on Scala 2.11 using
Scala Macros. We ran our experiments on a cluster of 40
machines (8 cores, 16GB RAM) running Flink v0.8.03, and
Spark v1.2.04. Every experiment was executed 7 times – we
report the median execution time.

5.1 Data-Parallel Workflow
In order to show the effect of the optimizations described

in sections 4.2 and 4.4 we devised an advanced workflow that
includes UDFs, a sequential loop, and an if statement. The
worklfow’s inputs are: (i) a set of trained spam email clas-
sifiers; (ii) a set of emails, and; (iii) a mail server blacklist.
The code for this workflow can be found in Listing 5.

3Available at http : //flink.apache.org/
4Available at http : //spark.apache.org/
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of the Data-Parallel Workflow.

The workflow goes as follows: first, it reads a set of emails
and applies a feature extractor on each email (line 1). It
then reads a list of blacklisted mail servers (line 2). The
loop at lines 7-25 applies different classifiers (lines 9-12) and
finds the one that produces the least amount of non-spam
emails sent from blacklisted servers (lines 15-18).

Applicable Optimizations. This program is subject to
all optimizations listed in Table 1, except for Fold-Group-
Fusion. The applicable optimizations are detailed below:
– Unnesting. As shown in Section 4.2.1, flattening the bl-

acklist.exists allows the use of a re-partition join on the
ip values instead of a filter with a broadcasted blacklist.
– Caching. The contents of emails are referenced, but not
modified within the loop at lines 7-25, so the expression
at line 1 can be cached based on the heuristic discussed in
Section 4.4.
– Partition Pulling. The nonSpamEmails expression pre-
serves the partitioning of emails. Enforcing a partitioning
on ip at both line 1 and 2, will propagate to line 15; if the
results are cached (see “caching” above) before entering the
loop, the shuffle step can be executed only once rather than
once per classifier.

Dataset. We generated a synthetic dataset comprising a
blacklist and a set of emails. The blacklist file contains
100.000 blacklisted IPs along with information about each
server (2GBs). The emails file contains 1M emails with var-
ious fields (mailserver IP, subject, body, etc.). The average
size of an email is 100KBs resulting to a total size of 100GBs.

Effect of Optimizations. Figure 4 depicts the speedup
of the workflow’s execution time when a set of optimizations
apply, relative to a baseline case with no optimizations. In
the baseline case, Emma does not perform unnesting. As a
result, the blacklist is broadcasted to all nodes (40 nodes
× 2GBs), in order to execute a broadcast join, resulting in
very large data exchange. When unnesting is applied (left-
most bars in Figure 4), the blacklist is instead partitioned,
and a repartition join with nonSpamEmails takes place. The
effect of unnesting alone accounts for a speedup of 1.5x in
Spark and 6.56x in Flink. The difference in the speedup be-
tween Flink and Spark is due to specifics in Flink’s current
handling of broadcast variables.

Applying partition pulling (second set of bars from the
left) in addition to unnesting does not bring any benefit.
This is explained by that fact that, without caching, the
databags are evaluated lazily in every iteration. Since parti-
tioning is going to be enforced either way by the join, force-
fully partitioning before the loop will have no effect. How-
ever, when we apply caching and partition pulling at the

same time, both blacklist and emails can be partitioned
on the ip field before they are cached (out of the loop). In
this case (rightmost bars in Figure 4), the cost of the shuffle
is paid only once and amortized over all iterations, causing
a speedup of 18.16x for Flink and 4.18x for Spark. Note
that this effect comes from the synergy of partitioning and
caching; caching alone achieves a speedup of 12.07x in Flink
and 3.86x in Spark (third set of bars) due to the amortization
of the extractFeatures UDF (now executed only once).

The above observations showcase the potential of our pro-
posed optimizations. However, the choice of the partitioning
scheme and the best point to enforce it, as well as decisions
regarding caching cannot be reliably handled by heuristics;
the right choice relies on runtime statistics and a cost model.

5.2 Other Algorithms
In this section we show the effect of our optimizations on

two iterative algorithms, namely: k-means, and PageRank
as well as two TPC-H queries (Q1 and Q4). The code for k-
means has been presented earlier (Listing 4), while the code
for the other algorithms can be found in Appendix A. In
Table 1 we can see that Fold-Group Fusion applies to all the
above algorithms and queries, while caching applies only to
the two iterative algorithms.

Datasets. For k-means we used 3 random fixed centers
and 1.6B points (48GBs). For PageRank we used a Twitter
Follower Graph [12] (23GBs, ∼2B edges). For TPC-H we
used the TPC-H dataset with a scaling factor of 50 and 100.

Iterative Algorithms. We ran the two algorithms without
Fold-Group Fusion but they failed to finish within a timeout
of one hour. We then applied Fold-Group Fusion and ran
the algorithms with and without caching. Caching on Spark
resulted into a speedup of 1.52x on k-means and 3.13x on
PageRank. PageRank was sped up more than k-means since
PageRank stores the vertices and their ranks already parti-
tioned by the vertex ID in-memory in a form that is ready to
be consumed by the next iteration. K-means merely caches
the set of points that do not need any repartitioning, and
thus, only the cost of reading the points from HDFS is saved.

Interestingly, in this experiment Flink did not show sig-
nificant improvement by the use of caching: the current ver-
sion of Flink does not provide a means to cache results in-
memory, thus Emma caches intermediate results on HDFS.
As a result, the benefits of caching are eliminated by the
cost of the additional I/O.

TPC-H Queries. Q1 is subject to Fold-Group Fusion while
Q4 is subject to both logical optimizations. As in the pre-
vious case, without the logical optimizations, none of the
queries was executed within the limit of one hour. With
logical optimizations enabled, both queries managed to fin-
ish their execution within 10 minutes (466s for Q1 on Spark
and 240s on Flink; 577s for Q4 on Spark and 569s for Flink).

5.3 Conclusions from the Experiments
In our experiments we showed that the various optimiza-

tions enabled by Emma can have a substantial impact on the
runtime of an algorithm. Omitting the logical optimizations
can be the reason for an algorithm to not execute at all,
either because it is too slow, or because of memory issues.

Caching was shown to positively affect the runtime of iter-
ative algorithms. As a matter of fact, under the assumption
that enough memory is available in the cluster machines,
an optimizer can safely make the heuristic decision to use



caching whenever possible, as a way to reduce network IO
and CPU cost (less shuffles). Moreover, keeping the interme-
diate results partitioned can further boost the performance.

6. RELATED WORK
General purpose APIs that programmatically construct

dataflows (or, data pipelines) such as the Spark [35] or Flink
[6] API, Cascading [1], Scalding [3] and Scoobi [4], were dis-
cussed in detail in previous sections. In the current section
we present the rest of the related work.

Deeply Embedded Query Languages. LINQ [27] allows
SQL-like querying constructs to be integrated in C#. Sim-
ilarly, Ferry [21] is a comprehensions-based programming
language that facilitates database-supported execution of
entire programs. To be evaluated, LINQ and Ferry pro-
grams are both mapped into an intermediate algebraic form
suitable for execution on SQL:1999-capable relational da-
tabase systems. Similar to Ferry and LINQ, Emma is a
comprehensions-based language, but does not only focus on
SQL/RDBMS execution. Instead, it targets data-parallel
execution on general-purpose distributed execution engines.
The code generated by Emma is optimized Scala programs
that make use of external systems APIs. Moreover, Emma
is able to analyze comprehensions, enabling an important
class of shared-nothing optimizations (e.g., group fusion).

The Delite project [13] provides a compiler framework for
domain-specific languages. Delite’s core intermediate repre-
sentation is based on primitives similar to the higher-order
functions used by Flink and Spark. Based on this repre-
sentation, Delite generates optimized executable kernels for
different hardware devices and schedules them from a cen-
tralized “interpreter” runtime. Emma proposes the use of
monad comprehensions based on folds in union represen-
tation as alternative intermediate representation for data-
parallel collection expressions. We believe that monad com-
prehensions provide a better formal ground for reasoning
and applying non-trivial algebraic optimizations.

Jet [5] is a data-parallel processing language that, is deeply
embedded in Scala. Jet uses a generative programming ap-
proach called lightweight modular staging (LMS) [31] to ana-
lyze the structure of user programs and apply optimizations
like projection insertion, code motion, operation fusion, etc.

Languages for Cluster Data-Parallel Computing.
DryadLINQ [34] allows to execute LINQ expressions on
Dryad [24]. It requires a dataflow to be expressed via a single
SQL-like statement, while Emma allows for more expressive
programs that are analyzed and optimized holistically - in
Emma dataflows are inferred in the user program.

Pig [30] and Hive [32] are SQL-inspired languages that are
restricted in order to achieve relational optimizations, while
UDFs are specified as separate Java programs. This makes
their implementation cumbersome.

The SCOPE [14] scripting language follows a SQL-like
syntax that can be extended with C# for custom UDFs.
Several optimizations apply to SCOPE scripts [23] ranging
from traditional distributed database optimizations (parti-
tioning, join order, column reductions, etc.) to lower level
code optimizations, such as code motion.

To the best of our knowledge, Emma is the first embedded
language for large scale data-parallel processing that utilizes
a holistic view of the user code at compile time to enable
implicit parallelism. Emma hides low level API primitives

behind a declarative, ubiquitous DataBag abstraction and
performs an important algebraic optimizations previously
unattained by similar languages to ensure high performance.
Emma translates a program into a driver and a set of parallel
dataflows that can be executed on multiple backends.

Optimizing Group Aggregations. There is a large body
of work studying aggregations in the parallel/distributed lit-
erature [15, 19]. Parallel databases such as DB2, Gamma,
Volcano and Oracle support pre-aggregation techniques for
SQL. However, when aggregations involve more complex
user defined functions and complex data types, optimization
opportunities are greatly reduced. To solve this issue, [33]
provides programmers an easier interface to program opti-
mizable user defined aggregate functions. Moreover, [33] can
produce pre-aggregators (or, combiners) when a provided re-
ducer function is declared as decomposable (or associative-
decomposable). The group fusion method we describe in
Section 4.2.2 does not require users to annotate their code
neither to follow any pre-defined template for generating
pre-aggregators; instead, it generalizes to all aggregates that
are programmed using folds.

More recently, Murray et. al. [29] discussed how group
fusion can be applied in the context of code generation for
LINQ. Their view of aggregates, is based on AlgBag-Ins
and requires additional “homomorphy” constraints on the
aggregates. Emma, by using AlgBag-Union, ensures that
this condition is always fulfilled, while applying banana-split
allows to fuse multiple folds simultaneously.

7. CONCLUSIONS AND FUTURE WORK
Current data-parallel analysis languages and APIs either

lack declarativity or are not expressive enough to capture the
complexity of today’s data-parallel analysis requirements.
To this end, we presented Emma – a language deeply em-
bedded in Scala, that provides implicit parallelism through
declarative dataflows. We presented an intermediate rep-
resentation and a novel compiler pipeline based on monad
comprehensions over bags in union representation. Emma
programs are compiled down to driver programs that utilize
APIs of existing data-parallel execution engines. Finally, we
presented a set of experiments that demonstrate that Emma
can provide declarativity without sacrificing performance.

Future Work. At the moment, the comprehensions discov-
ered by the the Emma compiler are translated into target
engine dataflows in a heuristic manner. This approach is
sub-optimal with respect to the optimization potential that
can be harvested at runtime (e.g., join order optimization).
To this end, we are currently working on an optimizer that
will generate the dataflows just in time. We are investigat-
ing the propagation of properties across different dataflows
and the possibility to switch deployment strategies (e.g., lazy
loop unrolling vs. native/persistent iterations) at runtime.

Moreover, domain-specific abstractions can be easily in-
tegrated on top of the DataBag API through Scala macros.
We are developing linear algebra and graph processing APIs
on top of the DataBag API.
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APPENDIX
A. EXAMPLE CODE

In the following, we provide Emma code for four addi-
tional algorithms (two graph algorithms and two relational
queries) and provide comments that should highlight some
of the unique features of the language based on concrete
code examples.

A.1 Graph Algorithms

A.1.1 PageRank
The algorithm is roughly divided in two parts for each it-

eration. (1) In lines 3-9 we calculate the current rank of each
vertex by joining each rank entry (retrieved from a State-

fulBag) with its vertices adjacency list. For each pair, the
comprehension yields a RankMessage which contains the cur-
rent vertex rank divided by the number of its neighbors. (2)
We then group the messages by vertex id (line 11) and cal-
culate the new rank by summing up the ranks (line 12) and
applying the rank formula in line 13. Finally, we point-wise
update the ranks state (see StatefulBags in Programming
Abstractions 3.1). In this variant of PageRank we iterate
for a fixed number of iterations, although in principle a ter-
mination criterion based on global rank change can used as
well.

Listing 6: Page Rank in Emma

1 var iter = 0
2 while (iter < maxIterations) {
3 val messages = for (
4 p <- ranks.bag();
5 v <- vertices; n <- v.neighbors;
6 if p.id == v.vertex) yield {
7 RankMessage(n, p.rank / v.neighbors.count())
8 }
9

10 val updates = for (
11 g <- messages.groupBy(_.vertex)) yield {
12 val inRanks = g.values.map(_.rank).sum()
13 val newRank = (1 - DF)/numPages + DF * inRanks
14 VertexWithRank(g.key, newRank)
15 }
16

17 ranks.update(updates)((s, u) =>
18 Some(s.copy(rank = u.rank)))
19

20 iter += 1
21 }

A.1.2 Connected Components
In lines 1-3 we map each vertex to the State object con-

sisting of (id, neighbors, component) triple and save the
result as a StatefulBag. We update the state iteratively in
a semi-naive manner while the changed delta is not empty
(line 5). Initially, the delta contains all vertices. In lines 6-
7, we create Messages for all neighbors of the vertices in
the current delta. We then find the highest vertex id by
neighbor (lines 9-10) and save it as an update object. The
updates are then compared point-wise against their state
counterparts in order to determine whether an update is
actually required (line 13). If this is the case, the new ver-
sion of the state at this particular point is returned in the
Some(...) expression at line 14. The delta is then trans-
parently merged into the current state and forwarded back
to the client, where a stateless (DataBag) version of it is
assigned to the delta variable (see 3.1).

Listing 7: Connected Components in Emma

1 var delta = for(v <- vertices) yield
2 State(v.id, v.neighborIDs, v.id)
3 val state = stateful[State, VID](delta)
4

5 while (not delta.empty()) {
6 val msgs = for(s <- delta; n <- s.neighborIDs)
7 yield Message(n, s.component)
8

9 val updates = for(g <- msgs.groupBy(_.receiver))
10 yield Updt(g.key, g.values.map(_.component).max())
11

12 delta = state.update(updates)((s, u) =>
13 if (u.component > s.component)
14 Some(s.copy(component = u.component))
15 else
16 None)
17 }

A.2 TPC-H Queries

A.2.1 TPC-H Query 1
We read and filter lineitem by the specified date in lines

2-5 before grouping and performing the final aggregation in
lines 8-32. We thereby first group lineitem by returnFlag

and lineStatus (line 9) and then specify the aggregate ex-
pressions in the actual comprehension head (lines 12-19).
Note that in other dataflow APIs the programmer would
have to perform the Fold-Group Fusion rewrite manually in
order to achieve the same performance. This entails (i) ap-
plying the banana split law in order to treat the six folds at
lines 12-19 as a composite fold over a tuple with six compo-
nents, and (ii) combining the e, s, and u arguments of this
fold in a ”pre-processing” map and reduceByKey, which cor-
respondingly produce and merge the 6-tuples encoding the
result of the fused folds (see also lines 5-6 in Listing 1).

Listing 8: TPC-H Query 1 in Emma

1 // compute join part of the query
2 val l = for (
3 l <- read(...LineItem...);
4 if l.shipDate <= "1996-12-01")
5 yield l
6

7 // aggregate and compute the final result
8 val r = for (
9 g <- l.groupBy(l => GrpKey(l.returnFlag, l.lineStatus)))

10 yield {
11 // compute base aggregates
12 val sumQty = g.values.map(_.quantity).sum();
13 val sumBasePrice = g.values.map(_.extendedPrice).sum()
14 val sumDiscPrice = g.values.map(l =>
15 l.extendedPrice * (1 - l.discount)).sum()
16 val sumCharge = g.values.map(l =>
17 l.extendedPrice*(1 - l.discount)*(1 + l.tax)).sum()
18 val countOrder = g.values.count()
19 val sumDiscount = g.values.map(_.discount).sum()
20 // compute result
21 Result(
22 g.key.returnFlag,
23 g.key.lineStatus,
24 sumQty,
25 sumBasePrice,
26 sumDiscPrice,
27 sumCharge,
28 avgQty = sumQty / countOrder,
29 avgPrice = sumBasePrice / countOrder,
30 avgDisc = sumDiscount / countOrder,
31 countOrder)
32 }



A.2.2 TPC-H Query 4
In lines 1-2 we read from the file system. Lines 4-13 rep-

resent the where part of the corresponding SQL statement.
For every tuple in orders, we filter by the date interval (lines
6-7) and apply the exists quantifier. Note that we retain
the same syntactic level of declarativity as SQL, while the
unnesting rule (Section 3.1) allows us to avoid hard cod-
ing the evaluation strategy for the exists. In other da-
taflow APIs, the user would have to express the exists

clause either by a broadcast variable or a join on the filtered
lineitem tuples. In line 13 we return the order priority for
all matching tuples. Finally, we group the resulting tuples
by their priority and count them (lines 16-18).

Listing 9: TPC-H Query 4 in Emma

1 val lineitems = read(...LineItem...)
2 val orders = read(...Orders...)
3

4 val join = for (
5 o <- orders
6 if o.orderDate >= dateMin &&
7 o.orderDate < dateMax &&
8 lineitems.exists( li =>
9 li.orderKey == o.orderKey &&

10 li.commitDate < li.receiptDate
11 )
12 )
13 yield Join(o.orderPriority, 1)
14

15 // aggregate and compute the final result
16 val rslt = for (
17 g <- join.groupBy(x => x.orderPriority)) yield
18 println(g.key, g.values.count())

B. EXTRA EXPERIMENTS

B.1 Effect of Fold-Group Fusion
In this section we show a set of experiments that ana-

lyze the effect of the Fold-Group Fusion (GF) optimization
that we introduced in Section 4.2.2. To this end, we run a
group aggregation query over different degrees of parallelism
(DOP, for short) and data distributions. To see the effect
of GF, we instruct our optimizer to produce plans for Spark
and Flink. For each of the systems, the optimizer outputs a
plan that is optimized with GF and one that is not.

Dataset. We generated 3 synthetic datasets whose keys
follow: (i) a uniform; (ii) a Gaussian; (iii) a Pareto dis-
tribution (assigning ∼35% of all tuples on one key). Each
tuple in the datasets consists of three fields: a key (integer),
a value (integer), and a small random payload (3-10 unicode
characters). We provide each spawned execution unit with
5M tuples (∼125MBs). As a result, the size of the dataset
increases proportionally to the DOP.

Query. We run the aggregation below for different DOPs:

for (g <- dataset.groupBy(_.key))
yield (g.key, g.values.map(_.value).min())

Analysis. Figure 5 shows the running times for Flink and
Spark with increasing DOP (80-640) for the three data dis-
tributions. A first observation is that fold-group fusion en-
ables both execution engines to successfully compute the ag-
gregation on all data distributions almost without any over-
head. This was expected, as local, partial pre-aggregations
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Figure 5: Effect of fold-group fusion to the scalability of a
group aggregation (min) in different data distributions.

take place on the mapper side and the reducers that exe-
cute the global aggregation are not overloaded – exactly one
aggregated tuple per key is sent from each mapper to the
respective reducer.

When GF is not used, both engines on the Gaussian dis-
tribution dataset need slightly more time to compute the
aggregate, while for the Pareto distribution, Spark fails to
finish any aggregation within the given time limit (40 min).
A last observation is that Flink scales linearly to the DOP
in all cases where GF is used, while Spark exhibits a super-
linear behavior.
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