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ABSTRACT
Parallel collection processing based on second-order func-
tions such as map and reduce has been widely adopted for
scalable data analysis. Initially popularized by Google, over
the past decade this programming paradigm has found its
way in the core APIs of parallel dataflow engines such as
Hadoop’s MapReduce, Spark’s RDDs, and Flink’s DataSets.
We review programming patterns typical of these APIs and
discuss how they relate to the underlying parallel execution
model. We argue that fixing the abstraction leaks exposed
by these patterns will reduce the cost of data analysis due
to improved programmer productivity. To achieve that, we
first revisit the algebraic foundations of parallel collection
processing. Based on that, we propose a simplified API that
(i) provides proper support for nested collection processing
and (ii) alleviates the need of certain second-order primi-
tives through comprehensions – a declarative syntax akin
to SQL. Finally, we present a metaprogramming pipeline
that performs algebraic rewrites and physical optimizations
which allow us to target parallel dataflow engines like Spark
and Flink with competitive performance.

1. INTRODUCTION
One can argue that the success of Google’s MapReduce

programming model [5] is largely due to its expressive-
ness and simplicity. Exposing an API built around second-
order functions such as map f and reduceh enables general-
purpose programming with collections via user-defined func-
tions (UDFs) f and h. At the same time, the semantics of
map and reduce alone (i.e., regardless of their UDF param-
eters) enable data-parallelism and facilitate scalability.

Vanilla MapReduce is a perfect fit for generalized process-
ing and aggregation of a single collection of complex objects,
but programmers stretch its limits when trying to express
algorithms characterized by multiple inputs and non-trivial
data and control flow dependencies. To overcome these
limitations without sacrificing the benefits of seamless in-
tegration of UDFs and collection processing primitives in a
general-purpose host language like Java or Scala, projects
like Cascading [1], SCOPE [9], Spark [23], and Strato-
sphere/Flink [3] emerged, proposing programming model ex-
tensions that focus on two basic aspects:

• Expressive dataflows APIs. This includes more
second-order primitives (e.g., cogroup, cross, join)
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as well as means to construct advanced dataflows by
composing them freely.

• Non-trivial data and control flow. This includes
primitives for data exchange between the driver and
the UDFs, caching, as well as primitives that enable
native control flow.

To motivate the goal of this work, we revisit some pro-
gramming patterns associated with the features listed above.
The code examples are given in Spark’s Resilient Distributed
Datasets (RDD) API, although similar observations can be
made in the other APIs as well. The domain used in the
examples consists of the following Scala types:

case class Person(id: Long, email: String, name: String)

case class Email(id: Long, from: String,
to: String, msg: String)

Join Cascades. In our first example, we want to write code
that associates all emails with their sender and receiver.

// 1) join ’people’ with ’emails’ on ’sender’
val xs = people.map(p => (p.email, p)) join

emails.map(e => (e.from, e))
// 2) join ’people’ with ’xs’ on ’receiver’
val ys = people.map(p => (p.email, p)) join

xs.map(x => (x._2._2.to, x._2))
// 3) transform ’ys’ as an RDD of flat tuples
val rs = ys.map(y => {
val to = y._2._1 // project ’to’
val from = y._2._2._1 // project ’from’
val email = y._2._2._2 // project ’email’
(from, to, email)
})

Two problems become evident from the above code snip-
pet. First, since Spark models keys as data, inputs on key-
based operators such as join need to be explicitly trans-
formed into RDDs of (key, value) pairs, which enforces
an extra map before each join. Second, n-way joins must be
specified as a cascade of binary joins. The element type in
the end-result (ys) is therefore a tuple of nested pairs whose
shape reflects the tree shape of the join cascade. Accessing
base data requires projection chains that traverse the tuple
tree to its leafs. As the example above illustrates, such id-
iomatic programming patterns lead to cluttered and hard to
read code. Flink and Scalding manage to resolve the first
issue by modeling keys as functions rather than data. The
second is usually alleviated through weaker schema models,
like the field literal lists used in Cascading and Scalding.



Aggregates. For our second example, consider a situation
where we want to compute a tf-idf statistic over the collec-
tion of emails. We start by calculating the term frequencies
– we tokenize each email message into terms t and com-
pute their frequencies tfrq using a library function, extend
the resulting (t, tfrq) sequence with the enclosing email
identifier, and finally flatten the result.

val tf = emails.flatMap(email => {
tokenizeAndCount(email.msg).map {
case (t, tfrq) => Tf(email.id, t, tfrq)
}
})

Next, we have to calculate the inverse document frequen-
cies, which for a term t and a document corpus D with
|D| = N are given by the following formula.

idf(t,D) = log
N

|{ d ∈ D | t ∈ d }| .

One way to do this in Spark is to group by term and map
over the groups to calculate the idf values.

val N = emails.count().toDouble
val idf = tf
.groupBy { case (_, t, _) => t }
.map { case(t, docs) => (t, math.log(N / docs.size)) }

However, the proper way to express this computation is
with a reduceByKey followed by a map.

val idf = tf
.map { case (_, t, _) => (t, 1) }
.reduceByKey(_ + _)
.map { case (t, dfrq) => (t, math.log(N / dfrq)) }

Although they denote the same result, the two variants
define different computations. The first shuffles the entire in-
put and materializes the groups at the receiver side, whereas
the second computes partial aggregates locally before shuf-
fling and merging the final document frequencies dfrq. The
difference in performance gets even more dramatic for nat-
urally occurring skewed distributions, as in this case above
where the terms follow a Zipf distribution. Programmers are
therefore advised to use the reduceByKey pattern whenever
possible. As in the previous case, this leads to situations
where the code is organized according to execution model
specifics rather than readability. Again, the problem can be
witnessed across all similar APIs (Flink, Cascading, etc.).

Caching. To motivate the need for caching, consider the
following piece of code which computes the tfidf values out
of tf and idf and uses them to iteratively update a model:

val tfidf: RDD[TfIdf] = /* compute ’tf*idf’ per term */
var model: RDD[Model] = /* initialize an ML model */
while (...) { // update ’model’ until convergence
model = /* derive from ’tfidf’ and old ’model’ */
}

The problem with that code is that RDD expressions are
lazy. Under the hood, the RDD type implements a builder
pattern that accumulates calls of transformation primitives
like map, flatMap, groupBy into a parallel execution plan.
Evaluation is implicitly forced by action primitives like
count, collect, first. The implication for the code above
is that the tfidf term is evaluated once for every loop. To
fix this type of problems, Spark offers a cache primitive that

forces an RDD result to be persisted. In our example, we can
append cache to the definition of tfidf. As before, figuring
out when to use it is left to the programmer and requires un-
derstanding and consideration of Spark’s execution model.
Cascading does not offer explicit support for caching, while
Flink can infer and enforce it, but only in limited situations
(as we will discuss shortly).

Broadcast Variables. Another problem can arise in a
variation of the last example:

val tfidf: Seq[TfIdf] = /* compute as above */.collect()
var model: RDD[Model] = /* initialize an ML model */
while (...) { // update ’model’ until convergence
model = /* transform old ’model’ */.map(x => {
/* anonymous function that reads ’tfidf’ */
})
}

Evaluation of tfidf is now triggered outside of the loop
by the collect action. The result of the computation is
collected as a local sequence and subsequently read in the
map UDF. As part of its closure, the tfidf value is therefore
serialized and shipped to the cluster in each iteration. In
this situation, performance can be improved by wrapping
the tfidf definition in a sc.broadcast(...) call. The
value is then broadcast to the cluster only once outside of
the loop and can be subsequently accessed from the map
UDF through a tfidf.value call. As in the previous case,
the decision whether to ship a read-only value as part of
the UDF closure or as a broadcast variable is left to the
programmer. A similar construct exists in Flink’s API.

Control Flow. The final issue we highlight is concerned
with the form of certain control flow primitives. In order to
optimally express the while loop from the caching example
in Flink, for example, one has to phrase the program as
follows:

val tfidf: DataSet[TfIdf] = /* compute per term */
var model: DataSet[Model] = /* initialize an ML model */
model = model.iterate(model => {
/* transform ’tfidf’ and old ’model’ */
})

Note how Flink relies on a dedicated iterate construct
for the iterative part of the program. The reason for this
is once more tied to the underlying execution mode. Spark
supports only acyclic dataflows and realizes iterative com-
putation by lazily unrolling and evaluating dataflows from
a Scala-driven loop. Flink’s runtime, in contrast, offers re-
stricted support for native iterations. This approach has
performance benefits (e.g. less scheduling overhead, loop-
invariant data caching), but requires special feedback edges
in the dataflow graph. To introduce those edges, a dedicated
construct like iterate is required at the API level. Ideally,
however, this should be hidden from the programmer, who
should be able to use a native Scala while loop in both cases.

Problem Statement. The above examples highlight the
existence of specific programming patterns and primitives
across various parallel dataflow APIs and execution engines.
The common theme that shines through is the tight inter-
play between the programming interface and the underlying
execution model. We end up in a situation with several
well-known problems: (i) high barrier of entry due to the
required level of understanding of the underlying execution
model, (ii) hard to read and maintain code due to low level



of abstraction, and (iii) missed opportunities for optimiza-
tion due to hard-coded execution strategies.

One way to tackle these problems is to provide high-level
programming abstractions on top of the low-level dataflow
APIs. The merits of this strategy are validated by the pop-
ularity of external languages such as Pig, Hive, and Sys-
temML, on the one side, and specialized internal libraries
for relational processing (DataFrame APIs), graph analysis
(GraphX, GraphLab), and machine learning (MLLib, Ma-
hout), on the other. This development, however, does not
resolve the need for seamless, high-level integration of paral-
lel collection processing in a general-purpose language. Ex-
ternal languages introduce a language barrier, while internal
libraries introduce a domain barrier.

In this paper, we argue in favor of an alternative approach
based on deep language embedding through quotation and
metaprogramming. The ability to manipulate data analysis
programs at compile time has twofold impact. First, it facili-
tates declarative, SQL-like dataflow definitions through host
language constructs such as comprehensions. Second, it al-
lows to decompose the program code as combination of (par-
allel) dataflow and (sequential) driver fragments, and make
holistic decisions for optimal dataflows execution based on
the surrounding driver context. The overall effect is a high-
level collection processing API where notions of parallelism
associated with an underlying dataflow engine are hidden
from the programmer.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews a theoretical model for parallel collection pro-
cessing and its relation to comprehensions – a declarative
syntax generalizing SQL. Section 3 presents Emma [2] – a
domain-specific language (DSL) embedded in Scala which
enables parallel collection processing through comprehen-
sions. Section 4 sketches Emma’s compiler pipeline and dis-
cusses how traditional database optimizations such as par-
tial aggregates and join order can be revised in light of the
model from Section 2. Section 5 reviews related work, and
Section 6 discusses ideas for future research. For a more de-
tailed technical description, we refer the reader to the orig-
inal version of this paper [4].

2. FORMAL FOUNDATIONS
Spark’s RDD, Cascading’s Collection, and Flink’s DataSet

all represent homogeneous distributed collections with so
called “bag semantics”. That is, the elements in a bag share
the same type, their order is not fixed, and duplicates are al-
lowed. Our point of departure therefore is a suitable formal
model for distributed collections (Section 2.1) and parallel
computations on those (Section 2.2), which also facilitates
declarative expression syntax (Section 2.3).

2.1 Bags as Algebraic Data Types
Bag Structure. We define the polymorphic type BagA
structurally, using a recursive constructor algebra.

type BagA = emp | cons x :A xs:BagA (AlgBag-Ins)

The above definition states that all possible BagA values
can be constructed inductively by two primitive constructor
functions: emp (which denotes the empty bag), and cons

(which denotes the bag where the element x is added to
the bag xs). In other words, for each xs ∈ BagA there
is a corresponding functional expression txs (which we call

the constructor application tree) that constructs xs. For
example, the tree associated with {{2, 42}} looks as follows.

cons

2 cons

42 emp

Bag Semantics. By definition, constructor algebras like
AlgBag-Ins are initial and thereby, following Lambek’s
lemma [17], bijective. This means that the association be-
tween constructor application trees and values is bidirec-
tional – each constructor application tree txs represents pre-
cisely one bag xs and vice versa. This poses a problem, as
it contradicts our intended semantics, which state that ele-
ment order should does not matter. Using only the algebra
definition, we have {{2, 42}} 6= {{42, 2}} because the corre-
sponding trees are different. To overcome this problem, we
must add an appropriate semantic equation.

consx1 consx2 xs = consx2 consx1 xs (EQ-Comm-Ins)

The equation states that the order of element insertion
is irrelevant for the constructed value. Based on this equa-
tion, we can create an equivalence relation on trees and use
the induced equivalence classes [txs ] instead of the original
trees to ensure xs ↔ [txs ] bijectivity. In our running exam-
ple, substituting the trees for {{2, 42}} and {{42, 2}} in the
left- and right-hand sides of (EQ-Comm-Ins), correspond-
ingly, renders them equivalent and puts them in the same
equivalence class [ {{2, 42}} ].

Relevance for Data Management. Conceptually, the
xs 7→ txs direction can be interpreted as a recursive parser
that decomposes a bag xs into its constituting elements. Da-
tabase runtimes encapsulate this behavior in a reusable op-
erator called Scan, and use it to sequentially read the records
in a base table. Indeed, we can define a simple iterator-based
version of Scan with the help of the AlgBag-Ins construc-
tors (again using Scala syntax).

class Scan(var xs: Bag[A]) {
def next(): Option[A] = xs match {
case emp => Option.empty[A]
case cons(x, ys) => xs = ys; Some(x)
}
}

Union Representation. The constructors in AlgBag-Ins
impose a left-deep structure on the constructor application
trees. There is, however, another algebra and a correspond-
ing set of semantic equations that encodes the same initial
semantics by means of general binary trees.

type BagA = emp

| sng x :A

| uni xs:BagA ys:BagA

(AlgBag-Union)

uni xs emp = uni emp xs = xs (EQ-Unit)

uni xs (uni ys zs) = uni (uni xs ys) zs (EQ-Assoc)

uni xs ys = uni ys xs (EQ-Comm)

Here emp denotes the empty bag, sng x denotes the sin-
gleton bag, and uni xs ys denotes the union of xs and ys.



Although AlgBag-Ins and AlgBag-Union model the
same type semantics, the latter reflects better the essence of
parallel collection processing, as we will show in Section 2.2.

2.2 Structural Recursion on Bags
The previous section described a conceptual model for the

structure of bags that identifies bag values with equivalence
classes of constructor application trees. We now describe
the principle of structural recursion – a method for defining
functions on bags xs by means of systematic substitution of
the constructor applications in the associated txs tree.

Basic Principle. Consider a case where we want to com-
pute the sum of the elements in xs = {{3, 5, 7}}. We can de-
fine this operation with a higher-order function called fold.

// structural recursion on union-style bags
def fold[A,B](e: B, s: A => B, u: (B, B) => B)

(xs: Bag[A]) = xs match {
case emp => e
case sng(x) => s(x)
case uni(ys,zs) => u(fold(e,s,u)(ys), fold(e,s,u)(zs))
}

The fold function takes three function arguments: e, s,
and u, substitutes them in place of the constructor applica-
tions in txs , and evaluates the resulting expression tree to
get a final value z ∈ B. To compute the sum of all elements,
for example, we can substitute e = 0, s = id, and u = +.

uni

uni

sng

3

sng

5

uni

sng

7

emp

⇒

+

+

id

3

id

5

+

id

7

0

⇒ 15

Relevance for Parallel Data Management. Again, we
want to highlight the importance of this view on bag com-
putations from a data management perspective. Imagine a
scenario where xs is partitioned and distributed over two
nodes: xs1 = {{3, 5}} and xs2 = {{7}}. Conceptually, the
value is still xs = uni xs1 xs2, but the uni is evaluated only
if we have to materialize xs in a single node.

node1 node2

uni

uni

sng

3

sng

5

uni

sng

7

emp

If we need the xs only to apply a fold, we can push the
fold argument functions to the nodes containing xsi, apply
the fold locally, and ship the computed zi values instead.
In general, e, s, and u do not form an initial algebra. This
implies loss of information when the substituted txs tree is
evaluated to z, and thereby that z is “smaller” than txs . This
is evident in the sum example – shipping the partial sums
zi is more efficient than shipping the partial bags xsi.

node1 node2

node3

� �

node1 node2

node3

� �

+

+

id

3

id

5

+

id

7

id

+

8 7

+

id

3

id

5

+

id

7

id

Fold Examples. The fold function provides a generic
mold for specifying operations on collections. Aggregation
functions like min, max, sum, and count, existential quali-
fiers like exists and forall, as well as collection processing
operators like map and filter can be defined as folds.

Moreover, starting from fold we can define an algebraic
structure known as monad on top of BagA and enable de-
clarative specification of computations.

2.3 Bag Comprehensions
Consider two bags xs = {{1, 2, 2, 3}} and ys = {{1, 2}} and

their corresponding constructor application trees

uni

uni

sng

1

sng

2

uni

sng

2

sng

3

uni

sng

1

sng

2

in an example where you want to compute the bag of all
pairs (x, y) where x ∈ xs, y ∈ ys and x = y.

If xs and ys were sets, we could describe this computation
mathematically as a set comprehension.

{ (x, y) | x ∈ xs, y ∈ ys, x = y }

If xs and ys were lists, we could write a Python list com-
prehension.

[ (x, y) for x in xs for y in ys if x == y ]

If xs and ys were database relations, we could write a
select-from-where query (effectively a SQL comprehension).

SELECT x, y FROM xs AS x, ys AS y WHERE x = y

Finally, let xs and ys be values from the user-defined type
BagN presented in Section 2.1. Modern functional languages
like Scala allow us to use native comprehension syntax for
arbitrary types, as long as those implement the so-called
monad operators. We can therefore write the intended com-
putation like this.

for (x <- xs; y <- ys; if x == y) yield (x, y)

At parse time, the above comprehension is transformed
into a chain of nested flatMap applications ending with a
map and interleaved with withFilter applications as follows.

xs.flatMap(x =>
ys.withFilter(y => x == y).map(y => (x, y)))

This desugaring scheme can be interpreted in terms of
the structural recursion scheme discussed above. The map
part of the flatMap application operates on the level of the
(orange) xs tree – each value x is substituted with a copy



of the entire ys tree. The inner map operates on the level of
the ys trees and maps their y values to a (x, y) pair using
the x from the outer map. We end up with an outer (orange)
bag of inner (blue) bags.

uni

uni

sng

uni

sng

(1,1)

sng

(1,2)

sng

uni

sng

(2,1)

sng

(2,2)

uni

sng

uni

sng

(2,1)

sng

(2,2)

sng

uni

sng

(3,1)

sng

(3,2)

The withFilter application substitutes singleton bags
that do not satisfy the x = y predicate with emp, and the
flat part of flatMap “forgets” the nested bag structure by
inlining the inner trees into the outer one.

uni

uni

uni

sng

(1,1)

emp

uni

emp sng

(2,2)

uni

uni

emp sng

(2,2)

uni

emp emp

Theory to Practice. Bag comprehensions provide the key
ingredient for solving two long-standing problems. First, as
first-class citizen in a general-purpose source language, com-
prehension syntax offers direct means for declarative paral-
lel collection processing (see Section 3). Second, as a first-
class citizen in an object language subject to metaprogram-
ming, comprehensions can serve as an entry point for the
integration of dataflow optimization techniques into general-
purpose languages (see Section 4).

3. LANGUAGE DESIGN
Based on the formal foundations outlined in Section 2, we

present Emma [2] – a DSL for parallel collection processing
embedded in Scala. We first discuss the core API features by
example, revisiting the issues outlined in Section 1, and then
list the requirements of our approach to the host language.

3.1 Programming Abstractions
The core abstraction of our API is a generic type called

DataBag which models bags in Union-representation. The
complete set of methods can be found in [4]. In the following,
we discuss characteristic features by example.

For Comprehensions. Binary operators like join and
cross are missing from the API. Instead, the DataBag type
implements the monad operations discussed in Section 2.3.
This allows us to write Select-From-Where expressions like
the join from Section 1 in a declarative way.

for {
email <- emails
from <- people
to <- people
if from.email == email.from
if to.email == email.to
} yield (from, to, email)

Folds. Computation on DataBag values is allowed only by
means of structural recursion. To that end, we expose the
fold operator from Section 2.2 as well as aliases for com-
monly used folds (e.g. count, exists, minBy). Counting the
number of emails, for example, can be written as follows.

val N = emails.fold(0, x => 1, plus) // or
val N = emails.count() // alias for the above

Nesting. The grouping operator introduces proper nesting:

val ys: DataBag[Group[K, DataBag[A]]] = xs.groupBy(k)

The resulting bag contains groups of values that share
the same key. Note that the values type is again DataBag[A].
This is fundamentally different from Spark, Flink, and
Hadoop MapReduce, where the group values have the type
Iterable[A] or Iterator[A]. An ubiquitous support for
DataBag nesting allows us to hide the complexity of prim-
itives like groupByKey, reduceByKey, and aggregateByKey
behind a simple “groupBy and fold” programming model.
For instance, calculating the idf term shown in Section 1
can be expressed as follows.

val idf = for {
(t, docs) <- tf.groupBy{ case (_, t, _) => t }
} yield (t, math.log(N / docs.count()))

Due to the deep embedding approach we commit to, we
can recognize nested DataBag patterns like the one above at
compile time and rewrite them into more efficient equivalent
expressions using primitives like aggregateByKey.

Coarse-Grained Parallelism Contracts. Current paral-
lel dataflow APIs provide data-parallelism contracts at the
operator level (e.g. map for element-at-a-time, join for pair-
at-a-time, etc.). Emma takes a different approach as its
DataBag abstraction itself serves as a coarse-grained contract
for data-parallel computation. The promise Emma gives is
to (i) discover all maximal DataBag expressions in a quoted
code fragment, (ii) rewrite them logically in order to maxi-
mize the degree of data-parallelism, and (iii) take a holistic
approach while translating them as parallel dataflows. This
also allows to transparently insert primitives influencing ex-
ecution like broadcast and cache as part of the compilation
process.

3.2 Host Language Desiderata
The decision to base our implementation on Scala is moti-

vated by purely pragmatic reasons: (i) Scala supports for-
comprehensions for user-defined types, (ii) the runtimes we
target have Scala APIs, and (iii) lightweight embedding
and metaprogramming are enabled through Scala’s macro
and reflection facilities. In theory, however, any language
which satisfies the above requirements can be used as a host-
language for a similar compiler pipeline.

4. COMPILER PIPELINE
The basic compilation steps are depicted in Figure 1. At

compile time, a Scala macro is used to (i) lift the Scala
AST into a suitable intermediate representation (IR), (ii)
apply logical rewrites that maximize data-parallelism to the
Emma IR (see Section 4.1), and (iii) compile the result as
a binary driver program with staged comprehensions. At
runtime, Scala’s reflection API is used to (iv) translate the



Scala AST

Emma IR

Driver with Staged
Comprehensions

Flink/Spark
Dataflows

(i) lift

(iii) lower

(ii) rewrite

(iv) translate

(v) evaluate

Figure 1: Basic Compiler Pipeline. Solid arrows represent
static, and dashed dynamic (JIT) compilation.

staged comprehensions into the API of the targeted paral-
lel dataflow engine, and to (v) evaluate those and feed the
results back in the driver. In the rest of this section, we
focus on some aspects of steps (ii) and (iv). The goal is to
illustrate optimization techniques widely adopted by the da-
tabase community on top of bag comprehensions as a model
for program manipulation through metaprogramming. As
in Section 3, more information can be found in [4].

4.1 Logical Optimizations
In this section, we show how two algebraic laws known as

banana-split [6] and fold-build fusion [10] facilitate a logical
rewrite upon generated groups. The rewrite transparently
inserts partial aggregates whenever possible and thereby re-
moves expensive group materializations.

Rewrite Candidates. Candidates for this rewrite are
groupBy terms where (i) all occurrences of the group values
are consumed by a fold, and (ii) these folds do not have
data dependencies. When the optimization is triggered, the
groupBy is replaced by an aggBy operator which fuses the
group construction performed by the groupBy together with
the subsequent fold applications on the group values. In
terms of the APIs discussed in Section 1, this corresponds
to replacing groupBy with reduceByKey whenever possible.

Banana Split. The banana split law generalizes the ma-
chinery behind loop fusion for arbitrary structural recursion.
Informally, it states that a pair of folds can be rewritten as
a fold over pairs. For example, the two folds below calculate
a sum and a count over the same input collection.

val sum = xs.fold(0, id, plus)
val count = xs.fold(0, x => 1, plus)

Those can be substituted by a single fold which operates
by pairwise application of the original substitution functions.
As a result, a pair containing the results of the two original
folds can be computed in a single pass. To illustrate the idea,
take a look at the application tree of the resulting pairwise
fold over {{3, 5, 1}}.

plus× plus

plus× plus

id×1

3

id×1

5

plus× plus

id×1

1

(0, 0)

Fold-Build Fusion. The second law enables a rewrite
which in functional programming languages is commonly

known as cheap deforestation. Intuitively, the law states
that an operation that constructs a bag can be fused to-
gether (or in database terms – it can be pipelined) with a
subsequent fold over the constructed value. To illustrate
why groupBy can be seen as a build operator, consider the
following naive definition of tf.groupBy(...).

val tfGrp = for {
t <- tf.map{ case (_, t, _) => t }.distinct()
} yield {
val docs = tf.withFilter(_._2 == t)
(t, docs)
}

We bind t over the set of distinct terms contained in
tf, and pair each binding with its corresponding docs de-
rived with a filter over tf. Substituting tfGrp in the code
from Section 3.1, we consume the grouped result as follows.

val idf = for {
(t, docs) <- tfGrp
} yield (t, math.log(N / docs.count()))

Knowing that the group values (docs) are used only in the
context of a count application, we can build upon referential
transparency and move the application up to tfGrp.

val tfAgg = for {
t <- tf.map{ case (_, t, _) => t }.distinct()
} yield {
val dfrq = tf.withFilter(_._2 == t).count()
(key, dfrq)
}

The fold-build fusion law tells us that withFilter and the
count can be fused to a single fold as follows.

val dfrq = tf.fold(0, if _._2 == t 1 else 0, plus)

The rewritten definition pairs terms directly with the ag-
gregated document frequencies dfrq instead of materializing
docs. To compensate for the rewrite at the consumer site,
we remove the original count and directly refer to dfrq.

val idf = for {
(term, dfrq) <- trAgg
} yield (term, math.log(N / dfrq))

In practice, we directly substitute groupBy with aggBy,
but the comprehension model enables better understanding
and reasoning about the soundness of such rewrites.

Other logical rewrites such as flattening [22] can also be
performed at this step in order to maximize data-parallelism.

4.2 Dataflow Generation
As a result of the logical optimizations from Section 4.1,

we obtain a modified AST for the original program. The
JIT compiler then offloads the identified maximal DataBag
terms to a parallel execution engine like Spark or Flink as
promised. To illustrate the challenge here, consider again
the (already normalized) join comprehension from Section 3.

for {
email <- emails
from <- people
to <- people
if from.email == email.from
if to.email == email.to
} yield (from, to, email)



According to the semantics from Section 2.3 the above
comprehension is equivalent to the following functional term.

emails.flatMap(email =>
people.flatMap(from =>
people
.withFilter(to => from.email == email.from)
.withFilter(to => to.email == email.to)
.map(to => (from, to, email))))

A blunt translation approach would be to take the func-
tional form and substitute the collection type from DataBag
to either RDD or DataSet. This is not a good strategy for two
reasons. First, it only allows for data-parallelism over the
top-most collection (in this case emails), while everything
else must be fully replicated across the cluster. Second, local
evaluation amounts to brute-force nested loops.

Fortunately, the database community has solutions for
this kind of problems. In relational databases, SQL queries
are represented as expression trees called logical plans. For
Select-From-Where queries, the leafs of the tree denote in-
put relations, while inner nodes denote binary join applica-
tions. Due to the associativity and commutativity of join,
however, multiple logical plans exist for the same query.
Query optimizers use dynamic programming to pick an op-
timal plan based on a data-driven cost model.

To bridge the gap between the functional and the data-
base world, we revise some old ideas from Grust [12] in the
context of parallel dataflows. Observe that the abstract se-
mantics of an (equi-)join operator can be defined in terms
of a comprehension.

def join(k1, k2)(xs, ys) = for {
x <- xs
y <- ys
if k1(x) == k2(y)
} yield (x, y)

Armed with that insight, we can devise recursive proce-
dures that transform comprehension expressions into func-
tionally closed cascades of joins. A bottom-up procedure
may begin by joining email and from, and continue recur-
sively until all generators are eliminated. This technique is
known as “Selinger-style query optimization” [20].

// intermediate result (closed functional term)
val ir = join(_.from, _.email)(emails, people)
// final result (residual comprehension term)
for {
(email, from) <- ir
to <- people
if to.email == email.to
} yield (from, to, email)

A top-down procedure, on the other side, may first split
the original comprehensions in two, join their results, and
continue recursively until all comprehensions have one gen-
erator. This technique is known as “Volcano-style query op-
timization” [11].

// intermediate result (residual comprehension term)
val ir = for {
email <- emails
from <- people
if from.email == email.from
} yield (from, email)
// final result (closed functional term)
join(_._2.to, _.email)(ir, people)

Either way, after the rewrite procedure terminates, we end
up with an algebraic variant of the original comprehension
based on second order combinators (like join and flatMap)
in direct correspondence with the primitives offered by the
targeted dataflow APIs. Translation from this form to the
concrete target API can be done in a single traversal pass.

5. RELATED WORK
Object-Oriented Databases. A multitude of research
has been performed during the OODBs era to bridge the
gap between programming languages and database query-
ing. Their primary goal was to make database access from
the programming language transparent, focusing mainly on
object persistence. OODBs attempted to support all the
power of the host programming language (e.g., [16]) but did
not succeed, mainly due to the complexity of such an under-
taking. Another approach towards solving the impedance
mismatch (i.e., using a string-quoted language like SQL
within Java, C, Ruby, etc.) was PASCAL/R [14] – a first
step towards integrated querying facility later resurrected by
LINQ [18]. XQuery [7] (with scripting extensions for exe-
cuting loops) provides a completely integrated programming
and querying language that supports a flavor of comprehen-
sion syntax. However, XQuery is tied to the XML data
model whereas our approach is oblivious to the data model.

More Recent Attempts. Similar to LINQ, Ferry [13]
is a comprehensions-based programming language that fa-
cilitates database-supported execution of entire programs.
To be evaluated, LINQ and Ferry programs both map into
an intermediate form suitable for execution on SQL:1999-
capable relational database systems. Similar to XQuery,
Ferry, and LINQ, Emma is a comprehensions-based lan-
guage, but targets JVM-based parallel dataflow engines.
Moreover, the Emma compiler pipeline relies on a holistic
view of the quoted code which simultaneously considers all
comprehended terms.

Algebraic Approach. In spirit, the ideas presented here
follow a line of work exploring the intersection between
type theory, functional programming, and data manage-
ment. The starting point is the work by Buneman et al. [8]
who showed that monads can be used to generalize nested
relational algebra to different types of collections and com-
plex objects. The implications of modeling collections in in-
sert or union representation have been explored by Siciu and
Wong [21] and more recently by Steele [15]. The approach of
“comprehending dataflows”presented in Section 4.2 is closely
related to ideas originally presented by Grust [12]. Our aim
is to bring forward the importance of this line of work in
facilitating seamless integration of declarative, data-parallel
collection processing into a general-purpose host language.

To the best of our knowledge, Emma is the first DSL for
large-scale data-parallel processing that utilizes a holistic
view at compile time to enable implicit parallelism. Emma
hides low level API primitives behind a declarative, ubiqui-
tous abstraction (DataBag) and implements targeted holistic
optimizations unattained by similar languages to maintain
competitive performance.

6. SUMMARY & OUTLOOK
We illustrated common abstraction leaks shared between

distributed collection processing APIs offered by state-of-



the-art parallel dataflow engines. We argued that such leaks
hinder the adoption of these APIs as a basic tool for ad-
vanced data analysis due to the burden imposed on the pro-
grammer. To alleviate this burden, we promoted the use of
monad comprehensions over bags in union representation as
first-class citizens in embedded DSLs. As a proof-of-concept,
we presented Emma – a Scala DSL that offers (i) declarative
dataflow syntax, and (ii) advanced rewrite-based optimiza-
tions. Emma programs can thereby employ dataflow engines
such as Flink and Spark as transparent co-processors.

Embedding Approach. The ideas behind Emma require
embedding in a general-purpose host language. While we
currently rely on quotation-based embedding (as advocated
by Lisp), type-based embedding (as advocated by LMS [19])
is an appealing alternative due to a more flexible metapro-
gramming infrastructure. Investigating and comparing the
practical benefits of the two approaches poses an interesting
research question.

Future Work. At the moment, the comprehensions discov-
ered by the the Emma compiler are translated into target-
engine dataflows in a heuristic manner. This approach is
sub-optimal with respect to the optimization potential that
can be harvested at runtime. To this end, we are currently
working on an optimizer that will statically pre-compute in-
teresting physical properties across dataflows and use this
information in the JIT compilation phase. Finally, we are
developing a linear algebra API that will allow for mixed use
of bags, matrices, and vectors. Interested readers can learn
more about Emma at our project webpage [2].
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