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Abstract—IaaS clouds have become a promising platform for
scalable distributed systems in recent years. However, while the
virtualization techniques of such clouds are key to the cloud’s
elasticity, they also result in a reduced and less predictable I/O
performance compared to traditional HPC setups. Besides the
regular performance degradation of virtualized I/O itself, it is
also the potential loss of I/O bandwidth through co-located virtual
machines that imposes considerable obstacles for porting data-
intensive applications to that platform.

In this paper we examine adaptive compression schemes as
a means to mitigate the negative effects of shared I/O in IaaS
clouds. We discuss the decision models of existing schemes and
analyze their applicability in virtualized environments. Based
on an evaluation using XEN, KVM, and Amazon EC2, we
found that most decision metrics (like CPU utilization and I/O
bandwidth) are displayed inaccurately inside virtual machines
and can lead to unreasonable levels of compression. As a remedy,
we present a new adaptive compression scheme for virtualized
environments which solely considers the application data rate.
Without requiring any calibration or training phase our adaptive
compression scheme can improve the I/O throughput of virtual
machines significantly as shown through experimental evaluation.

Keywords-Cloud Computing, Adaptive Compression, I/O Per-
formance

I. INTRODUCTION

In recent years, Infrastructure-as-a-Service (IaaS) clouds

have gained a lot of attention as a flexible and inexpensive

platform for large-scale distributed systems. Based on virtu-

alization techniques like XEN [1] or KVM [2], customers

of such cloud systems can allocate large sets of virtual

machines and use them on a short-term pay-as-you-go basis.

The virtual machines themselves run somewhere inside the

cloud operator’s data center without the customer knowing

any details about the underlying physical IT infrastructure.

Prominent examples of such IaaS clouds are Amazon EC2 [3]

and the Rackspace Cloud [4].

While the virtualization software used in today’s IaaS clouds

is crucial for rapid resource provisioning, it also imposes some

serious challenges compared to traditional high-performance

computing (HPC) setups. One of these challenges, in partic-

ular for data-intensive applications, is the reduced and less

predictable I/O performance of cloud systems.

Although recent developments in the area of virtualization

have led to significant improvements in I/O performance, pre-

liminary scientific evaluations of commercial IaaS clouds [5]–

[7] indicate that the throughput in practice is still considerably

lower than in unvirtualized environments. From the cloud

customer’s perspective, the physical environment of his virtual

machine is opaque, not giving him any insight into technical

details. However, the customer can usually assume one of the

following reasons for the degraded I/O performance:

On the one hand, virtualized I/O is known to cause CPU

overhead [8], [9]. In scenarios with high I/O load, it therefore

may be the CPU resources allocated to the virtual machine

which limit the data throughput. On the other hand, several

virtual machines may be co-located on the same physical host

and in fact share the I/O resources of the host system. As a

result, the I/O workload induced by one virtual machine can

negatively affect the I/O performance of a co-located virtual

machine and lead to unpredictable performance fluctuations.

A variety of projects is currently working to improve the

performance and fairness of shared virtualized I/O (e.g. [10]–

[12]. However, since these proposals require modifications to

either the operating system kernel or the hypervisor, users of

commercial clouds cannot benefit from those until their cloud

providers consider them mature enough to be adopted.

For this reason this paper presents an infrastructure agnostic

approach to mitigate the effects of shared I/O in clouds which

can be applied by the cloud customers without assistance of

the cloud providers, namely adaptive online compression.

The idea of adaptive online compression is to improve the

I/O throughput by continuously choosing between different

compression levels and applying them dynamically to the

outgoing data stream. The compression level is selected by

a decision model which constantly estimates the performance

gain based on system metrics like the current CPU load,

available I/O bandwidth, or the compressibility of the data.

Although several adaptive online compression schemes have

been introduced in recent years ( [13]–[16]), it is unclear

if they can be applied in virtualized environments for the

following two reasons:

First, most of the existing adaptive compression schemes

require a training phase in order to calibrate their decision

model. During that phase an unloaded system with stable I/O

characteristics is assumed. In a cloud, where information on

the physical IT infrastructure and co-located virtual machines

is not available, this assumption does not necessarily hold.

Second, the decision models of existing adaptive compression

schemes rely on the displayed system metrics of the operating
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system, like the current CPU utilization or available I/O

bandwidth. However, the accuracy of these systems metrics

in virtualized environments has not been studied so far.

This paper addresses the applicability of adaptive compres-

sion schemes in virtualized environments like IaaS clouds. In

particular, it has two main contributions:

• We provide an analysis of the accuracy of the displayed

system metrics which are the basis for the decision

models of existing adaptive compression schemes using

different types of virtualization technologies and clouds.

Our analysis covers the popular open source virtualization

techniques XEN and KVM as well as some baseline tests

on Amazon EC2. We found that even in situations with no

co-located virtual machines the CPU utilization displayed

inside the virtual machine is highly inaccurate under high

I/O load throughout all studied virtualized techniques.

Moreover, caching effects can seriously hamper estima-

tions of the available I/O bandwidth.

• As a result of the system metrics’ poor accuracy we

propose a new decision model for adaptive compression

schemes in clouds. Unlike existing decision models, our

model does not require a training phase. In addition, our

mechanism takes the achievable application data rate,

i.e. the data rate experienced by the application before

compressing the data, as foundation for the decision

process. Thus, the decision on compression levels solely

relies on directly measurable factors instead of system

metrics provided by a (virtualized) operating system.

The rest of this paper is structured as follows: In Section II

we present the initial analysis of the accuracy of system

metrics. Motivated by our findings, we describe our new deci-

sion model for adaptive compression in Section III including

pseudo code as well as aspects on the implementation in our

data processing framework Nephele [17]. In Section IV we

analyze the performance of our adaptive compression scheme

for TCP streams using different load scenarios. Section V

discusses related work and is followed by Section VI which

concludes the paper.

II. ACCURACY OF DECISION METRICS

Most adaptive compression schemes (e.g. [13], [15], [16])

consider the available system resources when deciding on the

compression level to apply on the outgoing data. Therefore,

these systems have to rely on the accuracy of the system

metrics like the CPU utilization and I/O bandwidth provided

by the operating system. The obtained data is fed into the

respective scheme’s decision model to continuously assess the

potential gain of compression under the current circumstances.

While this approach seems reasonable for physical, fully-

controlled computers, it is unclear whether the accuracy of

these system metrics, which are displayed inside virtualized

machines, is high enough to provide a meaningful basis of

decision-making.

To clarify this initial question, we conducted a series

of small I/O experiments on our local Eucalyptus-based

cloud [18] and measured the accuracy of the CPU utiliza-

tion and I/O throughput based on the popular open source

virtualization techniques XEN [1] and KVM [2]. A detailed

description of the setup is provided in the appendix.

A. Accuracy of CPU Utilization

Our first experiments aimed at determining the accuracy of

the CPU utilization as displayed inside the virtual machines

during I/O intensive operations. We created a set of small

auxiliary programs to generate network and file I/O load. Then

we contrasted the displayed CPU utilization inside the virtual

machine with the actual CPU utilization as reported by the

host system while the respective programs were running.

In order to monitor the CPU utilization inside the virtual

machines we continuously queried the Linux system interface

/proc/stat at an interval of one second. On the host system

our monitoring scheme was dependent on the virtualization

layer we used for the respective experiment. For KVM-based

experiments we first determined the process ID of the corre-

sponding qemu process, afterwards traced the CPU utilization

for that process using the /proc/<process ID>/stat
interface, again at a sample interval of one second. For XEN-

based experiments we used the management tool xentop
to observe the CPU utilization that was accounted to the

monitored domU from the perspective of the dom0.

Figure 1 illustrates the results of our tests pertaining to the

accuracy of the CPU utilization. Each of the four plots shows

the average CPU utilization during one particular type of I/O

operation (network send and receive, file write and read) as

reported by the operating system of the virtual machine and

the host system. The average has been calculated from at least

120 individual samples and is split into the fraction of time the

CPU spent processing into user (USR) or kernel mode (SYS),

serving hardware (HIRQ) or software interrupts (SIRQ). In

case of XEN-based virtualization, STEAL denotes the amount

of CPU time that the hypervisor has allocated to tasks other

than the observed virtual machine.

For all four types of I/O operations we also analyzed the

accuracy of the displayed CPU utilization using different kinds

of virtualization techniques. KVM (paravirtualization) refers

to experiments with KVM-based virtual machines which used

the virtio device drivers inside the virtual machines. In

contrast to that, KVM (full virtualization) marks experiments

with KVM-based virtual machines and unmodified device

drivers. For comparison, we also added the CPU utilization

as displayed by virtual machines on Amazon EC2. For these

experiments, however, we were unable to observe the CPU

utilization as reported by the host system.

During all the experiments involving network transfer we

used a TCP connection and made sure that the opposite part

of the connection was an unvirtualized machine which was

at least as fast as the observed virtual machine. Hence, any

potential performance bottleneck during these experiments was

either induced by the network or the virtual machine itself.

For all experiments including file I/O we used raw I/O API
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Fig. 1: Accuracy of displayed CPU utilization inside virtual machines during I/O intensive operations.

to avoid caching effects inside the virtual machine as far as

possible.

In sum, our experiments revealed a large discrepancy be-

tween the CPU utilization displayed inside the virtual machine

and the one reported on the host system. More importantly,

this discrepancy is not specific to a particular type of I/O

operation or virtualization technique. It can be found across

all considered I/O operations and virtualization techniques.

While for some I/O operations the discrepancy in the reported

CPU utilization is rather small (e.g. network send operation

using KVM (full virt.) or XEN), for others (e.g. network send

operation using KVM (paravirt.) or file read operation using

XEN) the gap can grow up to a factor of 15.

B. Accuracy of I/O Bandwidth

Our second series of experiments was targeted at the accu-

racy of the I/O bandwidth as reported by the virtual machine,

the second major performance characteristic considered by

most existing adaptive compression schemes. Therefore, we

modified our set of auxiliary programs to record timestamps

after every 20 MB of generated or consumed I/O data, respec-

tively. With the help of these timestamps we then calculated

the I/O data rate as it appeared from within the virtual

machine. In total, each auxiliary program either produced or

consumed 50 GB of data.

Figure 2 illustrates the distribution of the reported applica-

tion layer throughput in the course of our network experiments
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from the perspective of the sender’s virtual machine. Again,

we display the results for the different types of virtualization

environments. As a baseline, we also conducted the experi-

ments on the native host systems.
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Fig. 2: Distribution of network I/O throughput as observed

within the sending virtual machine.

For all experiments conducted on our local Eucalyptus-

based cloud, the fluctuations of network throughput only

increased marginally compared to those we measured on the

native host system. On Amazon EC2, however, we experienced

heavy throughput variations in the range of tens or even

hundreds of MBit/s. This confirms the findings of previous

evaluations [6], which report that the TCP/UDP throughput

on Amazon EC2 can fluctuate rapidly between 1 GBit/s and

zero, even at a time scale of tens of milliseconds.
Figure 3 depicts the throughput variance we experienced for

writing data to the virtual machine’s disk. The measurements

conducted on KVM-based virtual machines (both full and

paravirt.) as well as on Amazon EC2 showed a throughput

fluctuation which is comparable to the one of our native,

unvirtualized baseline system. However, with the XEN-based

virtual machines, which we instantiated on our local cloud,

we witnessed significant caching effects. Due to these caching

effects the data rate inside the virtual machine occasionally

appeared to be exceedingly high. In fact, the data was only

buffered inside the host system’s main memory. Periodically,

when the host system decided to actually flush the buffered

data to disk, the data rate displayed inside the virtual machine

dropped to a few MB/s. As a result of these caching effects, the

average data throughput for the XEN-based experiments also

spuriously appears to be higher compared to the experiments

on the native or KVM-based system in the plot. However,

after having written the 50 GB to the virtual machine’s disk,

large portions of the data had not actually been written to the

physical hard drive, but still remained inside the host system’s

main memory.
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Fig. 3: Distribution of file I/O throughput (write) as observed

within the virtual machine.

C. Discussion

As a result of our initial experiments, we can conclude

that the virtualization layer used in today’s IaaS clouds can

have a serious impact on the accuracy of the system metrics

that are displayed inside a virtual machine. In nearly all

of our experiments the displayed CPU utilization did not

accurately reflect the CPU overhead that was caused by the

I/O operations. Therefore, the virtual machine often considered

the CPU to be (nearly) idle when in fact it consumed a

significant amount of processing time according to the host

system. Moreover, we found that virtualization can increase

the variance in data throughput for both network and file I/O.

The variations for file I/O can be so severe that data streams

of several GB must be observed before a meaningful mean

throughput can be calculated.

This inaccuracy of both types of system metrics (CPU

utilization and I/O throughput) is a shortcoming for all kinds

of decision algorithms that have to trade off CPU against

I/O performance. With regard to adaptive data compression

the inaccurate display of CPU utilization inside the virtual

machine can lead to false estimations about the compression

times on the one hand. On the other hand, the fluctuating I/O

throughput makes it very hard to provide accurate bandwidth

predictions on a short-term basis.

Moreover, the accuracy of the system metrics depends

heavily on the virtualization technique (XEN vs. KVM), the

type of virtualization (full vs. paravirt.) as well as underlying

IT infrastructure. E.g., our throughput experiments on Amazon

EC2 showed completely different results than the ones we

conducted on our local Eucalyptus-based cloud although both

systems had a comparable kernel installed.
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III. ADAPTIVE COMPRESSION ALGORITHM

Based on our findings from the previous section we devised

a new decision model for adaptive data compression in virtu-

alized cloud environments. In order to reflect the particular

characteristics of such environments, the new decision model

has been built along to the following design goals:

• No training phase: The decision model must not re-

quire any offline calibration or training phase. An offline

training phase must typically be performed in a verifiably

unloaded system. In a commercial IaaS cloud, however,

a virtual machine may spuriously appear to be idle

although the host system is heavily stressed by co-located

virtual machines. Moreover, given that the performance

characteristics of two virtual machines of the same type

can differ significantly in some cloud systems [7], the

training phase must potentially be re-executed after the

instantiation of each machine. In sum, these training pe-

riods can account for considerable amounts of processing

time and, thus, also increase the processing cost.

• No decision based on CPU resources: As the display

of available CPU resources under high I/O load in virtual

machines is likely to be skewed, the new decision model

must not rely on it.

• Embrace throughput fluctuations: Unlike existing com-

pression schemes, which try to adapt the compression

level to the outgoing data stream on the granularity of

KB, our decision model shall focus on a granularity level

of MB in order to allow for the possible throughput

fluctuations we highlighted in Section II.

As a result of these design goals, we present a new decision

model which dynamically adapts the compression level as a

response to changes in the application data rate, i.e. the data

rate that is experienced by the application before compressing

the data. Although the application data rate at a particular

compression level also involves aspects like CPU utilization,

available I/O bandwidth or the compressibility of the data

itself, it is only indirectly influenced by those. Therefore, our

approach does not have to rely on the possibly inaccurate

displays of those metrics inside the virtual machine.
In the following we will explain our decision model and

highlight its implementation as part of our data processing

framework Nephele [17].

A. Decision Algorithm
Similar to existing approaches we assume our adaptive

compression module to be placed between the application and

the respective I/O layer. Instead of passing the data right to

the I/O layer it is first intercepted by the adaptive compression

module which, if considered beneficial, compresses the data

according to a specific compression level. As already demon-

strated by existing schemes (e.g. [16]), the entire adaptive

compression/decompression logic can be encapsulated in a

higher-level communication library and therefore becomes

completely transparent to the application.
Following the idea of previous publications (e.g. [14]–

[16]), we also assume that our adaptive compression algorithm

can choose between a fixed set of n compression levels.

Each compression level thereby refers to a specific com-

pression algorithm which is applied at the respective level.

The individual compression levels must be ordered by their

respective time/compression ratio. Compression level 0 stands

for no compression. A variety of compression algorithms also

offers parameters to influence their time/compression ratio.

Therefore, it is conceivable to use the same compression

algorithm at multiple levels but with different parameters.

Our adaptive compression scheme reconsiders the decision

which compression level is to be applied every t seconds.

Based on the amount of application data which has been

received from the application, (possibly) compressed, and

passed to the I/O layer during that time span, we calculate the

application data rate for these last t seconds. In case of network

I/O the application data rate also includes the decompression

time at the receiver because of the network’s flow control

mechanisms. The concrete decision algorithm to determine

the compression level for the next t seconds is shown in

Algorithm 1. The algorithm uses a series of auxiliary variables

which are explained in Table I.

Variable Meaning

ccl The compression level that is currently applied to the outgoing
data stream. Initially, the variable is set to 0 (no compression).

ncl The next compression level that shall be applied to the data
based on the algorithm’s decision.

c A simple counter variable which stores how often the decision
algorithm has been called since the last change of compres-
sion level. The counter is initialized with 0.

inc A Boolean variable which indicates if the compression has
been increased at its previous change. Initially, the variable
is set to TRUE.

bck An array which stores the backoff values for the individual
compression levels. Initially, all fields inside the array are set
to 0.

cdr The average application data rate which has been determined
for the last t seconds using the compression level ccl.

pdr The average application data rate which has been determined
for the t seconds before the last t seconds. On the first call
of the decision algorithm, pdr is set to cdr.

TABLE I: Explanation of the decision algorithm’s variables.

As already mentioned, our decision model adapts the com-

pression level in response to changes in the observed appli-

cation data rate. This is also reflected in the structure of our

algorithm which distinguishes three major cases:

In the first case (lines 4-14) the application data rate during

the last t seconds cdr (compressed with compression level ccl)
does not differ from the data rate of the previous t second time

span pdr. In order to cope with fluctuations in the data rate

we introduce the parameter α. The parameter α defines in

what range cdr may differ from pdr before our algorithm

actually responds to the change. Small values of α allow

our algorithm to detect the best compression level even if

the performance gains between the respective compression

algorithms are rather small. However, they also make the

decision algorithm more prone to incorrect decisions because

variations in the application data rate can also result from
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variations in the throughput of the underlying I/O system (e.g.

the TCP connection). During our experiments we found 0.2
to be a reasonable value for α.

Since our decision model cannot rely on any previous

knowledge from an offline training phase, it optimistically

switches to the next higher or lower compression level oc-

casionally to see how the application data rate is affected.

However, a fundamental aspect of our algorithm is that these

switches occur less often for compression levels which have

continuously led to improvements in the data rate. We achieve

this behavior through an exponential backoff scheme (line 6).

The decision to increase or decrease the compression level as

part of such an optimistic switch depends on the variable inc.
The variable inc indicates if the last change of compression

level has been an increase or a decrease. Note that inc is

usually updated outside of the displayed algorithm depending

on the input parameter ccl and the return value ncl.

Algorithm 1 GetNextCompressionLevel(cdr, pdr, ccl)

1: d← (cdr − pdr)
2: c← c+ 1
3: ncl← ccl
4: if |d| ≤ α× pdr then
5: {No change in application data rate}
6: if c ≥ 2bck[ccl] then
7: {Backoff over, try another compression level}
8: if inc = TRUE then
9: ncl← ncl + 1

10: else
11: ncl← ncl − 1
12: end if
13: c← 0
14: end if
15: else if d > 0 then
16: {Application data rate has improved}
17: bck[ccl]← bck[ccl] + 1
18: c← 0
19: else
20: {Application data rate has decreased}
21: bck[ccl]← 0
22: if inc = TRUE then
23: ncl← ncl − 1
24: else
25: ncl← ncl + 1
26: end if
27: c← 0
28: end if
29: return ncl

The second major case our algorithm has to handle is an

improvement of the application data rate (lines 15-18). In this

case our algorithm increments the backoff value of the current

compression level bck[ccl] by one. Thus, the algorithm will

less often try out other compression levels from the current

compression level given that no change in the data rate occurs.

The third and final case addresses a degradation of the appli-

cation data rate (lines 19-27). In this case the algorithm reverts

the last compression level change (lines 22-26). Moreover, it

sets the backoff value for the compression level with which

it experienced the degradation (bck[ccl]) back to 0. Hence,

optimistic switches to other compression levels again become

more frequent for that compression level in the future.
Although our algorithm can make wrong decisions with

respect to the chosen compression level, it can always react

to degradations of the application data rate immediately (i.e.

after t seconds) and revert the wrong decision. Good decisions

are rewarded with increased backoff values. This ensures that

any unnecessary probing of other compression levels decreases

exponentially over time.

B. Implementation
We integrated the new adaptive compression scheme into

Nephele, our framework for massively parallel data process-

ing [17]. Nephele executes data flow programs which are

expressed as directed acyclic graphs (DAGs) on large sets of

shared-nothing servers, e.g. IaaS clouds. Thereby each vertex

of the DAG represents a task of the overall processing job.

Tasks can exchange data through communication channels

which are modeled as the edges of the job DAG.
Currently, Nephele supports three different types of commu-

nication channels: file, TCP network, and in-memory channels.

For our initial prototype we integrated our adaptive compres-

sion scheme into Nephele’s file and network channels. The

implementation is completely transparent to the tasks, so there

is no modification required to their program code.
Our implementation features four different compression

levels. As in the description of the decision algorithm, com-

pression level 0 again represents no data compression. Given

the comparably high bandwidth of the available I/O interfaces,

we have chosen the compression algorithms for the remaining

three levels with regard to their compression speed. At com-

pression level 1 (LIGHT) we use the QuickLZ compression

library [19] which is highlighted by its fast compression speed.

QuickLZ is also used for compression level 2 (MEDIUM),

but with a setting which favors a better compressed size over

compression speed. For compression level 2 (HEAVY) we

use the compression library LZMA [20]. Although LZMA is

known to be significantly slower than QuickLZ, it generally

offers a better compression ratio which might pay off if the

available I/O bandwidth is low enough.
For performance reasons Nephele internally buffers data that

is written to its file or network channel in memory blocks

of at most 128 KB size before passing it the respective I/O

layer. Each of these blocks is passed independently to the

library assigned to the currently chosen compression library.

This means each block contains all the information to be

decompressed by the receiver, including meta information

about compression algorithm and the compression dictionary.

IV. EVALUATION

After having motivated and described our new adaptive

compression scheme, we now want to evaluate its performance
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through a series of experiments. All of these experiments were

conducted on our local Eucalyptus-based cloud using KVM-

based virtual machines with paravirtualized I/O devices. The

concrete setup of the virtual machines and the host systems

corresponds to the one described in the appendix.

As a result of the tremendous caching effects for file I/O

we observed in Section II, we focus on network I/O only.

A. Adaptivity

Our first series of experiments aims at demonstrating the

ability of our adaptive compression approach to determine

a suitable compression level for a given type of data and

I/O bandwidth. We created a simple Nephele job which

consists of two tasks (sender and receiver task) connected by

a TCP network channel. The sender and receiver task were

concurrently executed on two distinct virtual machine. Each

virtual machine ran on a separate host system.

In order to evaluate the impact of different compressibilities

on our approach, we conducted our experiments with three

distinct files. The first two files were chosen from the Can-

terbury Corpus [21], a well-known compression benchmark.

As a file with a high compressibility (HIGH) we chose the

file ptt5 from the benchmark which common compression

libraries can compress down to 10-15% of its original size.

As a representative for a file with moderate compressability

(MODERATE) we chose the file alice29.txt from the

corpus. Its compression ratio is about 30-50% depending on

the algorithm used. Since the Canterbury Corpus does not offer

files with a notably poor compressibility, we chose a standard

JPG image of about 250 KB (refered to as image.jpg or

LOW) as the third file for our experiments. Its compression

ratio ranged between 90-95%.

In some of the experiments we co-located additional virtual

machines on the same physical hosts in order to realistically

assess the effects of shared I/O on our adaptive compression

scheme. Each co-located virtual machine on the sender’s

host system thereby established a separate TCP connection

to another virtual machine co-located on the receiver’s host

system and transmitted data as fast as possible.

In all the experiments the sender task repeatedly wrote

the respective test files (either ptt5, alice29.txt, or

image.jpg) to the network channel until a total data volume

of 50 GB was generated and consumed by the receiver. During

all the experiments t was set to 2 seconds and α to 0.2.

Table II summarizes the results of our experiments. The

table shows the average completion times of the sample job

for the different data compressibilities and the number of

concurrent TCP connections which have been established by

the co-located virtual machines. The numbers in brackets

denote the standard deviation. For comparison, the table also

includes the average completion times when the compression

level was chosen statically before the execution and was not

determined by our adaptive compression scheme at runtime.

The numbers written in bold type mark the fastest execution.

As indicated in Table II, the compression levels chosen by

our adaptive compression scheme (DYNAMIC) led to average

completion times which were at most 22% worse than the

fastest average completion times with statically set compres-

sion levels. In many cases the completion times achieved with

our adaptive scheme were between the first and second fastest

completion times with statically set compression levels. Given

that our algorithm has to perform some initial probing to

determine the best compression levels, the results in these

cases can be considered ideal.
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Fig. 4: Performance of our adaptive compression scheme with

highly compressible data (HIGH) and no background traffic.

Figure 4 depicts the compression decisions our adaptive

scheme made in such an ideal case, i.e. the highly compress-

ible ptt5 file (HIGH) with no concurrent TCP connections.

The figure shows the sender’s CPU utilization, application

throughput, network throughput as well as the chosen com-

pression levels over time. Due to the large differences in

the compression/time ratios of the respective compression

libraries, the decision algorithm can quickly determine the

compression level LIGHT (QuickLZ, best compression speed)

to result in the best overall application data rate. The figure

also illustrates how the backoff mechanism we integrated in

our decision algorithm reduces optimistic switches to other

compression levels exponentially.
In case the performance differences between the respective

compression levels are less distinctive, our decision algorithm

may spuriously consider changes in the application data rate

as fluctuations and continue the probing process. Figure 5

illustrates such a case for the experiment with the poorly

compressible image.jpg file (LOW) and two concurrent

TCP connections. Lowering the value of α can help to

counteract this behavior, however, it also increases the risk

of wrong compression decisions due to regular fluctuations in

the available TCP throughput.

B. Changing Data Compressibility
In the second experiment we evaluate how our adaptive

compression scheme responds to severe changes in the data

compressibility. Therefore, we reused the sample job from

the previous adaptivity experiments and switched between the

highly compressible file ptt5 (HIGH) and the already com-

pressed image file image.jpg (LOW) every 10 GB. Again,
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Compression Level No concurrent TCP connection One concurrent TCP connection

HIGH MODERATE LOW HIGH MODERATE LOW
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

NO 569 (3) 567 (7) 566 (3) 908 (6) 896 (6) 903 (6)
LIGHT 252 (3) 629 (2) 688 (3) 258 (3) 624 (7) 927 (8)
MEDIUM 347 (6) 795 (5) 1095 (8) 367 (3) 840 (5) 1241 (42)
HEAVY 1881 (23) 5760 (25) 9011 (30) 1974 (24) 5979 (34) 9326 (30)
DYNAMIC 265 (4) 635 (4) 602 (3) 273 (3) 648 (16) 920 (13)

Compression Level Two concurrent TCP connections Three concurrent TCP connections

HIGH MODERATE LOW HIGH MODERATE LOW
Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

NO 1393 (75) 1292 (67) 1313 (39) 1642 (70) 1584 (120) 1638 (70)
LIGHT 312 (14) 756 (23) 1440 (87) 358 (10) 1027 (65) 1555 (17)
MEDIUM 378 (10) 896 (38) 1481 (27) 397 (3) 953 (55) 1829 (100)
HEAVY 1985 (26) 6130 (31) 9597 (45) 1994 (21) 6218 (34) 9278 (49)
DYNAMIC 363 (22) 920 (18) 1452 (40) 411 (35) 1075 (37) 1865 (114)

TABLE II: Average completion times of the sample job using different statically chosen compression levels (NO, LIGHT,

MEDIUM, HEAVY) as well as our adaptive approach (DYNAMIC). The completion times are subdivided by the compressibility

of the data (HIGH, MODERATE, LOW) and the number of concurrent TCP connections.
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Fig. 5: Performance of our adaptive compression scheme with

hardly compressible data (LOW) and two concurrent TCP

connections.

50 GB of data were generated in total for this experiment.

During the experiment, no background traffic was present.

The results of the experiment are depicted in Figure 6.

Apart from some minor shortcomings our decision algorithm

detected the changes in the data compressibility correctly and

switched the compression level accordingly. Large backoff

values for compression level 0 (no compression), which arose

during the transmission of image.jpg, can lead to relatively

late optimistic switches to a higher compression level. The

reason for this behavior is that without compression the

application data rate is not affected by the compressibility of

the data. However, the opposite case is detected immediately

by our algorithm.

V. RELATED WORK

The performance characteristics of cloud systems or virtual-

ized systems in general have recently gained a lot of attention.
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Fig. 6: Responsiveness to changes in data compressibility.

In [22] Menon et al. analyze XEN’s performance over-

head for network I/O virtualization through their Xenoprof

toolkit. Similar to our work, the authors motivate their toolkit

with the performance anomalies they experienced during their

work with virtual machines. However, instead of mitigating

the effects on a user level, the paper focuses on a lower

level evaluation and proposes several modifications for future

optimization efforts within the virtualization layer itself.

Cherkasova and Gardner [8] propose a monitoring frame-

work for XEN and provide a performance study to quantify

the CPU overhead for I/O intensive workloads. In their main

evaluation the authors focus on analyzing the increase of CPU

utilization depending on different levels of network traffic. The

accuracy of the CPU utilization as observed inside the virtual

machines is not part of their work.

Wood et al. [23] present a regression-based approach to

estimate the additional CPU load an application will cause

in a virtualized environment in comparison to a native one.
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In order to calibrate their estimation model, the authors rely

on a set of microbenchmarks which must be executed on the

virtual machine as well as on the host system. Thus, their

approach requires access to the host system which is typically

not granted in commercial IaaS clouds.

In [24] Tickoo et al. also address the problem of mod-

eling virtual machine performance. Their paper puts much

emphasis on highlighting performance degradations that result

from shared CPU caches or memory bandwidth. Based on a

virtualization benchmark the authors describe a performance

modeling approach to capture such effects.

Recently, the performance characteristics of Amazon EC2

have gained the interest of various research groups:

Walker [5] evaluated Amazon EC2 as a platform for high-

performance scientific computing. He demonstrated that the

execution speed of classic MPI applications can be signif-

icantly slower on Amazon’s virtual machines compared to

native cluster setups with comparable hardware characteristics.

Wang et al. [6] analyzed the impact of virtualization on

EC2’s network performance. Based on a set of benchmarks the

authors conclude that network performance in Amazon’s cloud

is subject to drastic fluctuations. In particular, they highlight

that TCP/UDP throughput can vary between 1 GBit/s and zero

at a time granularity of tens of milliseconds. This effect is

accounted to CPU sharing among several virtual machines.

Schad et al. [7] studied Amazon EC2 with respect to the

variances in CPU, I/O and network performance. For all three

of these resources the authors observed considerable perfor-

mance fluctuations across different runs of their microbench-

marks. Their analysis revealed that virtual machines of the

same type (with the same described hardware characteristics)

may be hosted on different generations of host systems. Since

the end user in general cannot influence the target host system

for his virtual machines, the authors conclude that performance

predictability on Amazon EC2 is currently hard to achieve.

In the area of adaptive compression schemes, several ap-

proaches already exist:

Motgi and Mukherjee [13] introduced their network con-

scious text compression system (NCTCSys) in order to reduce

the transmission times of HTML streams generated by a web

server, e-mail text messages or large text files transmitted by

FTP. Similar to our work, NCTCSys is capable of switching

between different compression algorithms. The compression

algorithm is chosen by evaluating a set of parameters (e.g.

network bandwidth, server load, number of clients connected),

which are gained from sensor modules.

Krintz and Sucu [16] presented a more general approach

applicable to various kinds of input data. Their decision

model includes CPU utilization and network bandwidth as

well as data obtained from an offline training phase. By

exploiting a linear relationship between compression ratios

of different compression algorithms, the decision model can

quickly compare the estimated performance of the different

compression algorithms used without testing them online.

Avoiding the usage of unsuitable compression levels seems

to be a great benefit, however, it is difficult to guarantee the

accuracy of parameters gained from offline training as men-

tioned in Section III. In order to measure the benefit gained by

compressing a data packet with a specific compression level, a

key challenge is to make accurate predictions of the available

bandwidth to forecast the transmission time needed. That is

why the Network Weather Service [25] is used. The NWS is

a distributed system consisting of several modules to monitor

and forecast network and resource performance.

Wiseman et al. [15] also implemented an adaptive com-

pression system for various kinds of data. They chose the best

fitting algorithm by observing each algorithm’s compression

time as well as the speed with which compressed blocks are

accepted by the receiver. A disadvantage of their decision

method is the usage of several hard-coded parameters, which

need a short sampling phase with unloaded I/O and CPU to

fit input data different from the ones used in their evaluation.

A system which does not rely on measurements of resource

performance was presented in [14]. Its main idea is to split the

process of sending a data package into a compression thread, a

sending thread, and a FIFO queue in the middle. The decision

to raise or lower the compression level depends on the size of

the FIFO queue. If the size is decreasing (resp. increasing) the

compression level is lowered (resp. raised). A disadvantage of

this system is the assumption that a higher compression level

will lead to higher compression ratio, which is not always

true, e.g., when the data is not compressible. Moreover, the

system does not consider that using higher compression levels

increases the compression time.

VI. CONCLUSION

In this paper we evaluated adaptive online compression

as a means to mitigate the effects of shared I/O in IaaS

clouds. Motivated by the decision models of existing adaptive

compression schemes, we first analyzed the accuracy of the

system metrics like CPU utilization or I/O bandwidth as

displayed inside virtual machines of various types. Since we

found these metrics to be potentially inaccurate, we proposed

a new adaptive compression scheme which only relies on

the application data rate and does not require any calibration

or training phase. In extensive network experiments our new

adaptive scheme yielded job completion times which were

at most 22% worse than the fastest completion times with

statically set compression levels and improved the overall

application throughput up to a factor of 4.

In general, we think adaptive online compression is a

valuable building block to improve the efficiency of distributed

applications which rely heavily on the network, especially

since no assistance of the cloud provider is required to apply

it. For file I/O we found the aggressive caching mechanisms of

some virtualization technologies to be a major obstacle which

we intend to address for future work.

APPENDIX

All the experiments presented in this paper have been

conducted on our local IaaS cloud. Each physical compute

node of the cloud had the following configuration:
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CPU Two Intel Xeon 2.66 GHz CPUs (model E5430)
RAM 32 GB
Hard Disk Seagate Barracuda ES.2 SATA 500 GB (formatted with ext3

file system)
Network Intel Corporation 80003ES2LAN 1 GB/s Ethernet (con-

nected to local 1 GB/s switch)
OS Gentoo Linux
Kernel 2.6.34-xen-r4 for XEN-based experiments, 2.6.32-gentoo-r7

otherwise

In order to provision both XEN and KVM-based virtual

machines on the physical nodes we used the software Euca-

lyptus [18] (version 1.6). The virtual machines used during all

our experiments had the following characteristics:

CPU 1 CPU core
RAM 2 GB
Hard Disk 60 GB, device driver scsi for KVM (full virt.),

virtio_blk for KVM (paravirt.), and xenblk for XEN,
formatted with ext2 file system

Network Bridged network, device driver e1000 for KVM (full virt.),
virtio_net for KVM (paravirt.), and xennet for XEN

OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.31-22-server for XEN-based virtual machines, 2.6.32-

gentoo-r7 otherwise

In order to avoid any side effect during our experiments, we

only ran one virtual machine per physical host and shut down

all unnecessary background services.

To put the experimental results which we gained on our local

Eucalyptus-based cloud into perspective with a commercial

cloud system, we also conducted some baseline tests on

Amazon EC2. For these tests we instantiated two virtual

machines of type “m1.small” in Amazon’s US East (Virginia)

data center. Both virtual machines were created inside the

same availability zone and same security group. To reduce

the probability of obtaining two virtual machines which are

co-located on the same physical host, we destroyed and rein-

stantiated the virtual machines several times between different

runs of our experiments. For all our experiments on Amazon

EC2 we used the virtual machine image “Basic 32-bit Amazon

Linux AMI 1.0” with the identifier “ami-08728661”. The

virtual machines reported a Linux kernel of version 2.6.34.7-

56.40.amzn1.i686. For all experiments which involved file I/O

we used the ephemeral storage partition of the virtual machines

with an ext2 file system.
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