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Abstract—Infrastructure as a Service (IaaS) clouds are
gaining increasing popularity as a platform for distributed
computations. The virtualization layers of those clouds offer
new possibilities for rapid resource provisioning, but also hide
aspects of the underlying IT infrastructure which have often
been exploited in classic cluster environments. One of those
hidden aspects is the network topology, i.e. the way the rented
virtual machines are physically interconnected inside the cloud.

We propose an approach to infer the network topology
connecting a set of virtual machines in IaaS clouds and exploit
it for data-intensive distributed applications. Our inference
approach relies on delay-based end-to-end measurements and
can be combined with traditional IP-level topology information,
if available. We evaluate the inference accuracy using the
popular hypervisors KVM as well as XEN and highlight
possible performance gains for distributed applications.
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I. INTRODUCTION

Recently, cloud computing has experienced a growing

interest as a platform for flexible, large-scale applications.

Operators of so-called Infrastructure as a Service (IaaS)

clouds, e.g. Amazon EC2 [1], let their customers allocate

and control sets of virtual machines (VMs) and charge them

on a pay-as-you-go basis. The VMs themselves are hosted

inside the operator’s data center without exposing any details

about the underlying IT infrastructure to the customer.

While this level of abstraction simplifies the deployment

of VMs significantly, it comes at the expense of losing topol-

ogy information, i.e. information on how the rented VMs

are physically interconnected. In particular data-intensive

distributed applications, e.g. Apache Hadoop [2], offer to

take the network topology into account in order to exploit

data locality and reduce the risk of network bottlenecks [3].

This research presents an approach to reconstruct likely

network topologies connecting a set of VMs in those so far

opaque IaaS clouds. Following the idea of network tomog-

raphy [4], our approach relies on end-to-end measurements.

Thereby the VMs exchange a series of probe packets to

determine the characteristics of the network links which

connect them. By correlating these link characteristics, it

becomes possible to infer (parts of) the underlying network

topology and exploit this knowledge at the application level.

The remainder of this paper briefly sketches the design

and implementation of our topology inference approach and

provides an overview of our experimental results using the

popular open source hypervisors KVM [5] and XEN [6].

II. DESIGN AND IMPLEMENTATION

Our topology inference approach is designed to work on

a set of VMs which are connected through a tree-like, but

initially unknown network structure.

Initially, one VM from this set is elected as a master node

and starts sending out ICMP echo requests to all other VMs.

The goal of this operation is to obtain a first coarse-grained

IP-level network topology. Based on this IP-level network

topology, we subdivide the overall set of VMs into subsets

of VMs which are in the same IP subnet (Figure 1). If (parts

of) the IP-level network topology could not be obtained, e.g.

because ICMP echoes are disabled by the cloud operator, a

subset may also include VMs from different IP subnets.

Figure 1. Schematic overview of the topology inference approach

In each subset we then start the end-to-end measurements.

The goal of the end-to-end measurements is to detect internal

network components which operate underneath the IP layer,

like e.g. link layer switches or bridges which connect the

individual VMs to the physical network.
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Through extensive experimental evaluations with KVM as

well as XEN we found round-trip time (RTT) probes which

are exchanged between each pair of VMs within a subset to

provide the most robust proximity metric for the inference

process in presence of hardware virtualization. In particular,

we observed a distinct gap in RTTs between co-located

VMs, i.e. VMs being hosted on the same physical server,

and those running on different servers. The RTT gap grew

to several milliseconds with increasing background traffic

using both paravirtualized KVM and XEN VMs.

In general, we found the virtualization layer to have a

significant impact on the observable link characteristics,

E.g., when we used full virtualization instead of paravir-

tualization, the measured delay between the individual VMs

showed large variations which can decrease the accuracy of

the inferred topologies tremendously.

Based on RTTs as a proximity metric between each pair

of VMs, our approach uses a bottom-up clustering algorithm

for the actual topology inference within a subset [7]. Starting

with each VM as an individual cluster, the algorithm pro-

gressively merges clusters with the closest proximity until

only one cluster is left. The algorithm is executed by one VM

in each subset. Eventually, the inferred network topology of

each subset is reported back to the master node which uses

the information to refine the global IP-level topology.

III. EXPERIMENTAL EVALUATION

We evaluated the accuracy of the inferred topologies on

our local cloud testbed. The testbed consisted of 64 VMs

(KVM, paravirtualization) running on eight physical servers,

which were all connected to a central Ethernet switch.

We express the accuracy of the inferred topology as the

mean Jaccard similarity between the sets of inferred co-

located VMs and the actually co-located ones. During the

experiments we generated different levels of background

traffic. The results are shown in Table I.

Set Sim. Background Traffic among VMs in MBit/s
0 100 200 300 400 500 600

XEN 0.95 1.00 1.00 1.00 1.00 1.00 1.00
KVM 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table I
MEAN SIMILARITY OF INFERRED SETS OF CO-LOCATED VMS AND

ACTUAL ONES

To highlight the potential benefit of the inferred network

topologies for cloud applications, we integrated our topology

inference approach into our parallel data processing frame-

work Nephele [8]. The sample job we devised consisted

of eight data-parallel producer tasks sending a total of

200 GB of data to eight consumer tasks. Each task was

scheduled to run on a separate VM. The results of the

experiment indicate that topology-aware scheduling based

on the inferred network topology led to a speedup by approx.

factor 2 compared to random task placement and by approx.

factor 4 compared to worst-case task placement.

IV. CONCLUSION AND FUTURE WORK

As a result of our research we can conclude that network

topology inference in IaaS clouds is a challenging, but

with respect to data-intensive distributed applications also

rewarding subject.

On the one hand end-to-end measurements allow for a

reliable detection of co-located VMs in paravirtualized en-

vironments due to the significant differences in the RTTs. On

the other hand the variations introduced by the virtualization

layer in terms of packet delay are currently so high that there

seems to be little potential to reliably infer passive network

components like link layer switches.

In general, we think our work represents a valuable

contribution to the current efforts of porting data-intensive

distributed applications to the cloud. For future work we

are curious to follow new developments in the field of

virtualization, especially with respect to hardware-assisted

I/O virtualization.
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