
Myriad – Parallel Data Generation on Shared-Nothing

Architectures

Alexander S. Alexandrov∗ Berni Schiefer† John Poelman‡ Stephan Ewen§

Thomas O. Bodner ¶ Volker Markl‖

Abstract

The need for efficient data generation for the
purposes of testing and benchmarking newly
developed massively-parallel data processing
systems has increased with the emergence of
BigData problems. As synthetic data model
specifications evolve over time, the data gener-
ator programs implementing these models have
to be adapted continuously – a task that might
become complex as the set of model constraints
grows. In this paper we present Myriad - a new
parallel data generation toolkit. Data genera-
tors created with the toolkit can produce very
large datasets by exploiting a completely par-
allel execution model, while at the same time
maintain cross-partition dependencies, correla-
tions and distributions in the generated data.
In addition, we report on our efforts towards a
benchmark suite for large-scale parallel analy-
sis systems that uses Myriad for the generation
of OLAP-style relational datasets.

1 Introduction

In recent years, due to the exponential growth
of the volume of Internet traffic, managing and

∗alexander.s.alexandrov@campus.tu-berlin.de
†schiefer@ca.ibm.com
‡poelman@us.ibm.com
§stephan.ewen@tu-berlin.de
¶thomas.o.bodner@campus.tu-berlin.de
‖volker.markl@tu-berlin.de
The Copyright c© 2011 Fachgebiet Datenbanksys-

teme und Informationsmanagement, Technische Uni-
versität Berlin. Permission to copy is hereby granted
provided the original copyright notice is reproduced in
copies made.

We thank IBM for supporting this work in the course
of its Centres for Advanced Studies (CAS) program.

processing large data volumes have become in-
creasingly important both for business and re-
search. Currently, a wide range of new projects
influenced by Google’s MapReduce [4] are of-
fering a scalable, fault tolerant and cost effec-
tive solution to these problems. Some projects
provide a programming abstraction in terms of
a high-level language [3] or a domain specific
API [7] while other extend the underlying par-
allel programming model [1, 2].

Since all these tools are still in active devel-
opment, there is a clear need to test, analyze,
and evaluate them for both business and scien-
tific reasons. But developing realistic use cases
for such systems is challenging, especially as
the data required for large-scale testing is either
not available due to privacy issues or too large
to transfer. What is normally well known or
can be estimated, though, is the schema of the
data involved in a particular use case scenario.
In case of absent real-world data sources, the
developer often assumes some statistical model
for the data and, based on that, generates syn-
thetic datasets that are used as input. How-
ever, developing scalable and efficient data gen-
erators is a non-trivial task that may consume
a lot of programming effort, especially as a sin-
gle threaded generation approach is infeasible
for parallel setups due to lack of scaling.

To support the developer in the process of
specifying and implementing use case specific
data generators from scratch, we developed the
Myriad parallel data generator toolkit. The
toolkit provides a set of reusable components
and extension points in order to minimize the
time and effort required for the implementa-
tion of data generator programs for arbitrary
data models. The produced generators sup-
port a partition-based execution model which

enables linear scale-out on a shared-nothing ar-
chitecture while preserving the ability for cross-
partition sampling of referenced objects. We
use a special class of pseudo-random number
generators to ensure that no data needs to
be moved across nodes even for the realiza-
tion of complex statistical constraints that re-
quire additional information about the refer-
enced records (e.g. correlated values).

The remainder of this paper is structured
as follows: Section 2 introduces the basic
mathematical concepts behind pseudo-random
number generators in the context of generat-
ing typed random data. Section 3 describes
the fundamentals behind our parallel execution
model and section 4 provides an architectural
overview of the system. Section 5 presents a
benchmark draft for large-scale analysis sys-
tems which also served as a first use case for
the data generator toolkit. Finally, section 6
provides an overview of the related work and
Section 7 concludes with ideas for future devel-
opment.

2 Technical Background

Before we start with the presentation of the
execution model, we introduce some necessary
formal background.

A pseudo-random number generator
(PRNG) is a sequence of integers si, typ-
ically defined recursively by a transition
function sn = f(sn−1) and an initial seed
s0. Since for virtually all transition functions
the produced sequence is cyclic, the si values
are often normalized to the [0, 1) interval by
dividing each number by the lower bound
(modulus) of the function mf , i.e. ri = si

mf
.

From the statistical perspective, the minimal
requirement for a useful PRNG algorithm is
the uniform distribution of the sequence of ri
values for arbitrary cardinality imax and initial
seed s0. For applications consuming a large
number of random numbers the length of the
cycle si is of critical importance for the quality
of the produced results.

Having formalized pseudo-random number
generators we can now introduce the concept
of a generator sequence. For an arbitrary data
type T with l randomly generated scalar fields,

a desired output cardinality CT and an initial
seed sT,0, the generator sequence for T is a se-
quence of T values ti, i ∈ 0 ≤ i < CT defined
by the mapping of subsequent chunks of the
PRNG sequence ri (each of length l) to the
random values of the corresponding t record.
The mapping can be specified as the product
of l generator functions (one for each random
field):

gT : [0, 1)l → T,

gT (ri, . . . ri+l) = gT,0(ri)×. . .×gT,l−1(ri+l) 7→ t

3 Execution Model

This section presents some key execution model
decisions implemented by the toolkit. We dis-
cuss the parallelization strategy behind our
scalable generation process. We also present
a random record inspection approach used for
complex data model constraint types and a
randomized de-clustering technique that fits in
situations requiring reference sampling from a
context-constrained subset.

3.1 Parallelization Strategy

The parallel execution strategy implemented
by the toolkit is based on a horizontal par-
titioning scheme. For each data type, non-
overlapping subsequences of the generator se-
quence are assigned to a single partition. The
created partitions can be generated completely
independent from each other. The key idea be-
hind our parallelization approach is to use a
PRNG algorithm that supports fast computa-
tion of arbitrary si values, i.e. generator that
can derive si directly from i instead of applying
the transition function f i times on the initial
seed s0.
Consider a model consisting of two data

types U and V with cardinality CU and CV .
Since all the information about the execu-
tion environment is available in the bootstrap
phase, the driver application can choose how
many data generator instances to start and
where to place them. The generator sequences
for U and V are divided into equally large sub-
sequences of size respectively cU := CU

N
and

cV := CV

N
, where N is the degree of parallelism.

Each subsequence is then assigned one of the N
instances according to the following scheme:

U -sequence V -sequence
1 u0 : ucU−1 v0 : vcV −1

. . .
i u(i−1)cU : uicU−1 v(i−1)cV : vicV −1

. . .
N u(N−1)cU : uCU−1 v(N−1)cV : vCV −1

In order to ensure that the generated se-
quences remain invariant to the offered degree
of parallelism, all generator instances adjust
the starting index for the local sU and sV com-
ponents before they enter the corresponding se-
quence generation loop.

3.2 Random Field Inspection

In order to realize certain model constraints,
the local generator is required to read random
values of a sampled referenced record. In the
most basic case U references V and the pri-
mary key of V is randomly generated by the
generator function gV,0. The generation logic
for the foreign keys in U can be executed in
the following three steps: 1) sample an index j
for the referenced record vj ; 2) compute rV,j′
where j′ is the offset of the rV chunk respon-
sible for the random values of vj and finally 3)
compute the primary key of vj as gV,0(rV,j′).
This comes at the cost of a single random sV
access but does not cause any additional net-
work or I/O transfer. Moreover, the basic field
inspection logic can be easily generalized and
used in more complex scenarios involving mul-
tiple fields (e.g. multivariate correlations).

3.3 Clustered Sequences

The last technique we present is used in cases
where the sampling range for referenced records
is restricted by some random property of the
local record. Think about modeling user pref-
erences when generating order lineitems for a
retailer data model (as the one presented in
Figure 1). We generate a lineitem by first sam-
pling the user and then the product offer. Each
user has a random preference type that speci-
fies in which product classes the user is inter-
ested. In order to ensure that the generated
lineitems comply to this statistical constraint,

for each lineitem we have to restrict the prod-
uct offer sampling range based on the current
user preference type1. The most efficient way
to achieve that is to cluster the product offers
sequence by product class. That way we can
efficiently exclude product offer subsequences
with inappropriate product class entries at run-
time.
The major drawback of this clustering strat-

egy is the unrealistic side-effect that is imposed
on the generated data sequence (the user might
not want the product offers clustered by prod-
uct class). In such cases, it is advisable to
de-cluster the data in a post-processing step.
To do this, we reuse a method relying on mul-
tiplicative groups to generate permutated se-
quences of numbers of predefined cardinality
[5]. The basic idea is to pick a prime num-
ber p slightly larger then the desired cardinal-
ity and then to work with the multiplicative
group (Z/pZ)×. Since p is prime, the group
is guaranteed to be cyclic and to have exactly
p − 2 elements corresponding to the integers
1 . . . p− 1. Moreover, the random properties of
the group cycle defined by xi = gi are strongly
influenced by the choice of the generator ele-
ment g. We can choose an appropriate g, enu-
merate the values for gi as an extra field in
the clustered sequence and then sort on this
field in order to randomize the clustered values.
We are currently working on ways to determine
good values for g.

4 Architecture

Myriad’s extensible architecture consists of six
separate modules. These are record objects
that serve as data holders, a generator subsys-
tem that produces random record sequences, a
configuration module, mathematical tools such
as PRNGs and probability distributions, an
I/O subsystem exposing the generated records
to the client and a simple CLI frontend to con-
trol the data generation process. This section
describes each but the last component.

Record Objects provide an object-oriented
view of the data model. All records share

1which can be re-computed for each lineitem using
the inspection technique described in Section 3.2

a common base record type and contain only
simple getter and setter methods (similar to
the data transfer objects known from applica-
tion programming design patterns). Typically,
there is one record type for each data source in
the data model.

The Generator Subsystem handles the
creation of generation sequences for each record
type. We provide three base generator types
for deterministic, static and random sequences
of records. The iteration strategy used by the
generators is decoupled in the form of generator
tasks and the random value generation logic for
a single record is configured declaratively using
a chain of predefined so called hydrator objects.
The overall generation process for each parti-
tion is supervised by a driver program.

The Config Module parses configuration
files and extracts data generation parameters,
static object sets, and defined probabilities.
The information is used by the generators
to derive sequence cardinalities, subsequence
boundaries, and for hydrator logic setup.

The Math Tools provide common probabil-
ity functions (e.g. Pareto and Gaussian) and a
standard PRNG component. The PRNG im-
plementation currently shipped with the sys-
tem uses the same algorithm for sequential and
random access. This means that the random
record inspection described in section 3.2 has
the same cost as generating an extra random
field per record inside the local sequence.

The I/O Subsystem receives the values of
each record and writes them to an output
stream. The output stream and data format
are thereby fully exchangeable so that the data
can either be loaded directly into the target
system, e.g. a large-scale data processor or a
classic RDBMS, or persistently stored on a lo-
cal or distributed file system.

5 Use Case

There is a big trend in industry to com-
plement the traditional analysis of relational
data in databases with deep analysis of the

relational data together with semi-structured
as well as unstructured data from additional
sources. The latter is typically done with tools
like MapReduce. Together, the diverse charac-
teristics of the data and queries pose a variety
of different challenges to the analytical systems.
To our knowledge, no benchmark today reflects
those diverse characteristics and is able to de-
fine the sweet spot of different systems, like
RDBMSs or MapReduce, in a coherent way.
We used the Myriad toolkit to devise a bench-
mark scenario, addressing that issue. Due
to space constraints, this section gives only a
rough overview. For details, we are making
the full specification available online. In its
core, the benchmark builds upon the TPC-DS
benchmark specification. We simplified it and
added new tables and different queries. TPC-
DS reflects the relational part of the scenario.
Our modified version represents a web retailer
scenario with customers, orders, order-returns,
external re-sellers, web-logs, recommendations,
and fraud detection. Figure 1 shows the result-
ing schema. It contains a representative rela-
tional part (star schema warehousing), which
also provides data for additional deep analyti-
cal queries, like clustering of re-sellers by their
profile of offers, or collaborative filtering to rec-
ommend products to customers. For the non-
relational part, we added server logs, which
are frequently used to analyze the searching,
browsing, and decision making process of cus-
tomers. We divided the queries into six differ-
ent categories. Each category contains queries
that pose a different kind of challenge to the
analytical system:

Embarrassingly Parallel Queries run
parallel instances of the query without com-
municating or exchanging data between them.
The result of the query is the union of the
different instances’ result. We count also
queries in this category that require a simple
finalizing step, such as the computation of a
total sum from partial sums.

Parallel Aggregations require to establish
a partitioning on the grouping keys, because
either the aggregation functions cannot be de-
composed into pre-aggregation and final aggre-
gation, or the number of distinct groups is too

Figure 1: The Benchmark Schema

large to be finally aggregated in an efficient way
by a single node.

Parallel Joins come in a variety of flavors.
This category contains single joins with varying
characteristics, including symmetric and asym-
metric input sizes, varying result set sizes and
different opportunities to reuse partitionings in
the input.

Multi-Join BI Queries extend the previ-
ous category, by testing how well the system
handles compositions of joins and aggregations.
The queries contain longer pipelines and re-
quire optimization across multiple joins or ag-
gregations. Examples for such queries are man-
ifold in the original TPC-DS or in the TPC-H
specification.

Borderline relational Queries are queries
that can be expressed in SQL in a cumbersome
way, but don’t perform well in parallel. On the
other hand, they are expressible for example
in MapReduce with relatively little effort. An

example is the decomposition of click-streams
into sessions, which are the consecutive activity
of a single user with a specified maximal delay
between two clicks.

Non-relational Queries operate on non-
relational data and frequently perform opera-
tions that are not expressible in terms of rela-
tional operators. In our example, this category
contains machine-learning queries for collabo-
rative filtering via matrix factorization, as well
as certain clustering algorithms.

6 Related Work

Gray et al. [5] were the first to discuss strate-
gies for scalable parallel data generation, in-
cluding a scheme for dense unique random data
generation which we reuse for the purpose of
randomizing clustered values (see Section 3.3).
Hoag et al. [6] present a parallel synthetic data
generator and an XML-based synthetic data
description language (SDDL) similar to the one
we intend to implement in our system, but their

parallel execution approach is limited by the
lack of remote field inspection support. More
recently Rabl et al. [8] introduced a parallel
data generation framework (PDGF) which im-
plements a similar execution model, most no-
tably the use of a fast SeedSkip operation for
sequence partitioning and recomputation of ref-
erenced remote fields.

The idea to employ generators with fast
SeedSkip support in order to partition the data
was inspired by the work of Xu et al. [9]
who use a similar technique to facilitate par-
allel Monte-Carlo simulations in the evalua-
tion of queries on uncertain data in a cluster-
computing environment.

7 Conclusion

The data generator provides an easy and effi-
cient means to generate large amounts of data
with certain statistical features. It is, however,
still quite a challenge to identify and define rel-
evant features, whether in the course of design-
ing a benchmark dataset, or when creating a
synthetic dataset that is supposed to reflect the
statistical properties of an existing one.

In the future, we want to improve the data
generator suite in a two fold way: First, we will
add a lightweight way of specifying those distri-
butions and correlations in a profile, such that
no code has to be written to adopt the genera-
tor. Second, we plan to add a tool that, given
a dataset and workload, automatically extracts
the relevant statistical properties of the dataset
and generates a profile for the data generator.
The generator can use that profile to create
a synthetic dataset that reflects the statistical
features of the original dataset.

The current version of the Myriad toolkit is
available at http://www.myriad-toolkit.com.

References

[1] Dominic Battré, Stephan Ewen, Fabian
Hueske, Odej Kao, Volker Markl, and
Daniel Warneke. Nephele/PACTs: A pro-
gramming model and execution framework
for web-scale analytical processing. In Pro-
ceedings of the 1st ACM symposium on

Cloud computing, SoCC ’10, pages 119–130,
New York, NY, USA, 2010. ACM.

[2] Alexander Behm, Vinayak R. Borkar,
Michael J. Carey, Raman Grover, Chen Li,
Nicola Onose, Rares Vernica, Alin Deutsch,
Yannis Papakonstantinou, and Vassilis J.
Tsotras. Asterix: towards a scalable,
semistructured data platform for evolving-
world models. Distributed and Parallel
Databases, 29(3):185–216, 2011.

[3] Kevin Beyer, Vuk Ercegovac, Rainer
Gemulla, Andrey Balmin, Mohamed
Eltabakh Carl-Christian Kanne, Fatma
Ozcan, and Eugene J. Shekita. Jaql:
A scripting language for large scale
semistructured data analysis. PVLDB,
2011.

[4] Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113,
January 2008.

[5] Jim Gray, Prakash Sundaresan, Susanne
Englert, Ken Baclawski, and Peter J. Wein-
berger. Quickly Generating Billion-Record
Synthetic Databases. In ACM SIGMOD
Conference, 1994.

[6] Joseph E. Hoag and Craig W. Thompson. A
parallel general-purpose synthetic data gen-
erator. ACM SIGMOD Record, 36(1), 2007.

[7] Apache Mahout. URL http://mahout.

apache.org.

[8] Tilmann Rabl, Michael Frank,
Hatem Mousselly Sergieh, and Harald
Kosch. A Data Generator for Cloud-Scale
Benchmarking. In TPCTC, 2010.

[9] Fei Xu, Kevin Beyer, Vuk Ercegovac, Pe-
ter J. Haas, and Eugene J. Shekita. E =

MC3: managing uncertain enterprise data
in a cluster-computing environment. In
ACM SIGMOD Conference, 2009.

