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Abstract—Modern Infrastructure-as-a-Service (IaaS) clouds
offer an unprecedented flexibility and elasticity in terms of
resource provisioning through the use of hardware virtual-
ization. However, for the cloud customer, this virtualization
also introduces an opaqueness which imposes serious obstacles
for data-intensive distributed applications. In particular, the
lack of network topology information, i.e. information on how
the rented virtual machines are physically interconnected, can
easily cause network bottlenecks as common techniques to
exploit data locality cannot be applied.

In this paper we study to what extent the underlying network
topology of virtual machines inside an IaaS cloud can be
inferred based on end-to-end measurements. Therefore, we
experimentally evaluate the impact of hardware virtualization
on the measurable link characteristics packet loss and delay
using the popular open source hypervisors KVM and XEN.
Afterwards, we compare the accuracy of different topology
inference approaches and propose an extension to improve
the inference accuracy for typical network structures in data
centers. We found that common assumptions for end-to-end
measurements do not hold in presence of virtualization and
that RTT-based measurements in paravirtualized environments
lead to the most accurate inference results.

Keywords-cloud computing; network topology inference; net-
work tomography; virtualization

I. INTRODUCTION

In the recent years, cloud computing has gained

tremendous popularity as a new promising platform for

distributed, large-scale applications. At the forefront of the

cloud movement are commercial products like Amazon

EC2 [1] or the Rackspace Cloud [2]. Following the idea

of Infrastructure-as-a-Service (IaaS), these products allow

their customers to rent large sets of compute resources

on a short-term pay-per-usage basis. The rented compute

resources are usually delivered in form of virtual machines

(VMs) which are hosted inside the companies’ data centers.

The customers thereby need not (and typically are not

supposed to) know about the physical location of their

VM. They can rely on their VMs running “somewhere in

the cloud” without knowing which VMs are hosted on the

same physical server, which servers share the same rack, etc.

While this opaqueness contributes much to the cloud’s

flexibility and simplifies management tasks for the data cen-

ter operator, it hinders the efficient execution of distributed

applications which require to exchange large amounts of data

among the rented VMs. In particular, the lack of topology

information, i.e. knowledge about the VMs’ physical inter-

connections, makes it impossible to exploit data locality and

increases the risk of network bottlenecks.

A prominent example of an application class which highly

benefits from the cloud’s elasticity on the one hand but

suffers from the lack of topology information on the other

hand is massively-parallel data processing [3]. Since network

bandwidth is typically a scarce resource for these kinds of

applications, processing frameworks like Google’s MapRe-

duce [4] or its open-source implementation Hadoop [5]

attempt to run processing tasks either right on the node

which stores the task’s input data or on a node in close

proximity. The proximity between the compute nodes is

defined by the number of network switches a data packet

must traverse from one node to the other.

While this type of proximity is easy to determine in a

static cluster, it imposes some serious obstacles for today’s

IaaS clouds. Diagnostic tools like traceroute can poten-

tially provide a course-grained network topology including

routers. However, these tools rely on the cooperation of the

internal network components [6] and are unable to identify

link-layer network components like switches or bridges,

which also play an important role for exploiting data locality.

As a result of the current limitations, this paper focuses

on network topology inference based on end-to-end mea-

surements (also called network tomography) in IaaS clouds.

Figure 1 illustrates the overall idea. A set of network end

nodes (for example VMs) are connected through a physical

routing tree (Figure 1a). The physical routing tree’s structure,

in particular the internal nodes (e.g. network switches,

routers, or bridges), is unknown to the end nodes. One or

more source nodes from the set of end nodes then send

a series of probe packets to a set of destination nodes.
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(a) physical routing tree (b) logical routing tree

Figure 1: The logical routing tree (b) as inferred from the

physical routing (a) based on end-to-end measurements

Based on these probe packets the end nodes can measure

characteristics (like latency or loss) of the individual network

path and correlate these to infer a likely logical routing tree

(Figure 1b). The logical tree will not include all the internal

nodes of the physical routing tree, but those at which the

network path to two end nodes diverges.

Although there has been vivid research in the field of

network topology inference recently (e.g. [7], [8], [9]), the

applicability of this work in IaaS clouds has not been studied

so far. Most previous approaches share a strong focus on

large-scale networks, like the Internet, which are charac-

terized by a large number of nodes, limited throughput,

and considerable packet loss as well as latency. In contrast

to that, the networks in today’s cloud data centers are

characterized by high throughput links and transfer latencies

that are orders of magnitude smaller than the ones in wide-

area networks. Moreover, to our knowledge, this paper is the

first to study the inference process in presence of hardware

virtualization, which has already been found to have a sig-

nificant impact on the network link characteristics [10]. The

contributions of this paper can be summarized as follows:

• We analyze the network path characteristics delay

and loss rate and carefully study their suitability as

proximity metrics for topology inference in virtualized

environments. In particular, we will evaluate how sus-

ceptible the individual characteristics are to varying I/O

load inside KVM and XEN-based VMs.

• Based on this analysis, we compare the accuracy of

the inferred topologies for two different latency-based

measurement approaches.

• Finally, we propose an extension to existing topology

inference algorithms which improves the inference ac-

curacy for typical network structures in data centers.

The rest of this paper is structured as follows: In Section II

we discuss recent developments in the field of network

topology inference and summarize the most prevalent ap-

proaches. To assess the impact of hardware virtualization

we provide an initial evaluation on the path characteristics

loss rate and delay in Section III. Section IV contrasts the

accuracy of the inferred topologies for two different latency-

based measurement techniques and introduces our extension.

Section V concludes the paper and briefly discusses open

issues and future work.

II. RELATED WORK

The first work in terms of network topology inference

based on end-to-end measurements has been conducted in

the context of multicast networks ([11], [12]). However, due

to the poor availability of multicast in real-world networks,

several projects also studied topology inference based on

unicast end-to-end measurements. Coates et al. [7] presented

a method to capture path delay in unicast routing tree

topologies called sandwich probing. Based on this novel

probing scheme, the authors devised a Markov Chain Monte

Carlo (MCMC) procedure to infer the most likely network

topology. In [13] Castro et al. demonstrated how to express

the inference problem as a hierarchical clustering problem

and proposed their agglomerative likelihood tree (ALT)

algorithm. Shih and Hero later extended their work by finite

mixture models and MML model order penalties [8]. Ni

et al. addressed the complexity of the proposed clustering

algorithms and incorporated node joins and departures in the

inference process [9]. Shirai et al. [14] as well as Tsang et

al. [15] considered topology inference based on round-trip

time (RTT) measurements. However, neither work examined

the effects of hardware virtualization.

In the context of cloud computing, topology awareness

has been considered by the following papers:

In [16] Kozuch et al. presented Tashi, a location aware

cluster management system. Tashi features a so-called re-

source telemetry service which is capable of reporting the

distance between a pair of VMs according to some user-

defined metric. However, the way the resource telemetry

service obtains the location data of the VMs is not ad-

dressed in the paper. Gutpa et al. [17] introduced a hosting

framework for VMs. Their framework is able to deduce

the traffic pattern of distributed applications running inside

these VMs. Based on the observed traffic patterns, VMs are

migrated inside the cluster such that the locality of a data

transmission is improved. Ristenpart et al. [18] discussed the

location of VMs inside Amazon EC2 from a security point

of view. Based on observations like common routing paths,

common IP address prefixes or packet RTTs, the authors

examine the possibility to detect colocated VMs and exploit

the colocation for attacks.

III. NETWORK PATH CHARACTERISTICS IN CLOUDS

To infer likely network topologies based on end-to-end

measurements, it is important to understand the characteris-
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tics of the paths which the probe packets travel. Bestavros et

al. [19] established the theoretical foundation for topology

inference in unicast networks. They showed that a broad

class of link characteristics like throughput, packet loss rate,

or packet delay can be used as a basis for a proximity metric

given that these characteristics obey certain properties.

As an initial step towards topology inference in clouds,

we will analyze the impact of different types of hardware

virtualization on link loss and delay. Unlike in case of

specialized network hardware, packets routed between VMs

and their respective host system may experience unexpected

delays or congestions as a result of high system load or

scheduling strategies of the host’s kernel. This initial analy-

sis will highlight whether the common assumptions [19], [9]

for end-to-end-measurements in unicast networks still hold.

All experiments presented in the following were con-

ducted on our local cloud testbed with 64 VMs hosted on

eight physical servers. We compare the characteristics of

the network links for KVM [20] and XEN [21]-based VMs.

For KVM we also considered VMs with unmodified device

drivers (full virt.) and modified ones (paravirt.). A detailed

description of the testbed can be found in the appendix.

The confidence intervals, if shown in the plots, represent a

confidence level of 95%. If not shown, confidence intervals

have been small and omitted to improve legibility.

A. Inference based on Packet Loss

Packet loss is often considered as a link characteristic

for topology inference [12], [22]. The idea is that a source

node sends probing packets to at least two receiver nodes.

The receivers measure their individual packet loss rate. From

correlations in the loss rates it is then possible to deduce

common subpaths between the source and the receivers.

Ideally, loss measurements are conducted in a multicast

network, so that a dropped packet affects the loss rate of all

of its receivers in the same way. In unicast networks, the

effect of a multicast transmission on the loss rate can be

mimicked by a series of back-to-back unicast transmissions.

However, a crucial prerequisite is that the loss rate of all

unicast packets within a probe is positively correlated on a

common subpath between the source and the receivers [9].

To verify whether this prerequisite is fulfilled in a vir-

tualized environment we let each VM of our cloud setup

consecutively send probes consisting of two unicast packets

to all other VMs within the same setup. The interval between

two consecutive probes has been 100 ms. Within one probe,

the two unicast packets were sent back-to-back, i.e. with

no intentional delay between the packets. Since both unicast

packets are destined for the same receiver (i.e. their common

subpath equals the entire path both packets travel through

the network) we expect to see either both packets of the

probe arrive at the receiver or none at all.

Figure 2 depicts the loss rates we observed depending on

the generated background traffic. Overall loss rate denotes

the percentage of probes in which either one or both unicast

packets did not reach the destination. 1-packet loss refers to

the percentage of probes where only one of the two unicast

packets arrived at the receiver. Details on the generation of

the background traffic can be found in the appendix.
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Figure 2: Observed loss rates against background traffic for

different types of virtualization

As one fundamental obstacle we found that with full

virtualization (KVM full virt.) we were unable to create

any significant packet loss. At a background traffic of

approximately 200 MBit/s per VM the overhead of the I/O

virtualization became so high that the VMs fully utilized

their assigned CPU core. Consequently, we hit a CPU bot-

tleneck before we were able to cause any network overflow

or congestion which may have resulted in packet loss.

The same experiment with paravirtualization showed dif-

ferent results. For both KVM and XEN-based virtualization

we were able to observe packet loss of up to 15 or 16%, re-

spectively. However, again it required considerable amounts

of background traffic to be generated. Problematic about the

experiments with KVM and paravirtualization is also that

the correlation of packet losses within one probe is poor.

Depending on the rate of background traffic, for 25% (800
MBit/s) to 65% (400 MBit/s) of all lost probes, one of the

included unicast packets still reached its destination.

B. Inference based on Packet Delay

Topology inference based on packet delay follows a sim-

ilar idea as the previous loss approach. Within one probe a

pair of unicast packets is sent back-to-back to two receivers.

As long as all unicast packets travel along the same subpath,

they are expected to experience similar delays. Receiver

pairs with a long shared subpath from the source are likely
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to have highly correlated delays while the delay of receiver

pairs with a short common subpath is expected to diverge.

To analyze the impact of different virtualization tech-

niques on the correlation of path delays we let each VM

of cloud setup consecutively send probes consisting of two

unicast packets to all other VMs. Again, the two unicast

packets were sent back-to-back to the respective receiver.

Like in the loss experiment, the common subpath of both

unicast packets was identical to their overall path through the

network. Hence, if packet delay on the common subpath was

correlated, the second unicast packet would have to arrive at

the receiver without any significant delay after the first one.

Figure 3 illustrates the average interarrival times between

the first and the second unicast packet of a probe measured at

the receiver. We distinguish between the interarrival times of

those probes which have been exchanged between VMs on

the same physical host (intra-host interarrival time) and those

between VMs on different hosts (inter-host interarrival time).

As a baseline, we also plotted the packet interarrival time

we measured for probes between the unvirtualized hosts.
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Figure 3: Observed packet interarrival times against back-

ground traffic for different types of virtualization

The results indicate that paravirtualization increases the

average interarrival time approximately by factor 10 com-

pared to the unvirtualized baseline case. However, even with

large amounts of background traffic the average temporal

gap between the arrival of the first and the second unicast

packet is still considerably smaller than 0.1 milliseconds.

For full virtualization (KVM full virt.) the situation is dif-

ferent. Even at a relatively modest background traffic of 150
MBit/s per VM, the interarrival times grow to more than one

millisecond. Given that the average packet RTT in today’s

local area networks is typically below one millisecond, it is

unreasonable to assume any kind of correlation with respect

to packet delay for this kind of virtualization.

After having examined the impact of virtualization on the

possible correlation of packet delay, our second experiment

focused on the effects of virtualization on the observable

packet delay itself. Due to the lack of a global clock, mea-

suring delay on a timescale of microseconds in a distributed

system is a cumbersome task. As a remedy, we measured

the packet RTTs instead. Figure 4 shows the results.
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Figure 4: Average RTTs against background traffic for

different types of virtualization

The results distinguish between RTTs which have been

measured between VMs running on the same physical host

(intra-host RTT) and those running on different hosts (inter-

host RTT). In general, the RTTs are highly influenced by the

level of background traffic. With full virtualization (KVM

full virt.), the average RTT rises up to approximately 9
milliseconds at a background traffic of 200 MBit/s per VM.

More importantly, the measured values show large variations

for this type of virtualization, such that intra-host and inter-

host RTTs appear essentially the same.

In contrast to that, the variance of the RTTs from the

experiments with paravirtualization is much smaller. More-

over, we observed a distinct gap between the intra-host and

inter-host RTT for both KVM as well as XEN-based VMs

which continued to grow as the level of background traffic

increased. Especially, for the KVM-based VMs the average

inter-host RTT eventually rose up to almost 30 milliseconds.

C. Discussion

As an intermediate result of our effort to infer network

topologies based on end-to-end measurements in IaaS clouds

we can state that virtualization can have a significant impact

on the observable characteristics of a network link.
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For topology inference based on packet loss, both the

KVM and the XEN virtualization layer destroyed the cor-

relation of unicast packet loss on common subpaths, which

is assumed by existing inference approaches [9]. In terms

of packet delay, we experienced a similar problem for

fully virtualized environments. Here the virtualization layer

introduced significant gaps in the packet interarrival times

which also renders any assumption about correlated packet

delays on common subpaths unreasonable.

Among all conducted experiments, observing link latency

in paravirtualized clouds appears to be the most promising

way to successfully deduce topology information among the

involved VMs. Although we partly observed large increases

in the RTTs under high load with both KVM and XEN,

the individual values showed only little fluctuations at a

particular level of background traffic. Moreover, we were

able to measure statistically reliable differences between

intra-host and inter-host RTTs.

IV. TOPOLOGY INFERENCE

Having examined the impact of virtualization on the ob-

servable link characteristics loss and delay, we will now deal

with the actual topology inference process. As a reaction

to our findings from the previous section we will focus on

delay-based approaches and only consider paravirtualization.

Like most existing approaches (e.g. [11], [13], [12])

we attempt to reconstruct the logical routing tree through

agglomerative hierarchical clustering. Starting with each VM

as an individual cluster, this clustering technique progres-

sively merges clusters based on a similarity metric γ until

only one cluster is left. The approach requires an initial set

of similarity values γi,j for each pair of VMs i and j.

In the following we will discuss two different delay-based

measurement approaches which can be used to construct γi,j
and then contrast their performance in the inference process.

A. Obtaining Initial Similarity Values for the VMs

To obtain the required pairwise similarity metric γi,j
Coates et al. proposed a delay-based measurement technique

called sandwich probing [7]. Compared to classic packet

delay measurements, sandwich probing eliminates the need

for synchronized clocks on the sender and the receiver node

because it only measures delay differences.

As illustrated in Figure 5 a sender node s sends out

a sequence of so-called sandwich probes. Each sandwich

probe consists of three packets, two small packets destined

for receiver j separated by a larger packet destined for

receiver i. The second small packet is expected to queue

behind the large one at every inner node of the routing tree

(e.g. bridge, switch, etc.). This induces an additional delay

Δd between the small packets on the shared links. Δd can

be used as a similarity value γi,j because the larger γi,j
becomes the longer the common subpath from s to i and j
must be. The longer the common subpath from s, the closer i

Figure 5: The general idea of sandwich probing

and j must be in the logical routing tree. Since all sandwich

probes originate from a single sender s, all inferred logical

routing trees will have s as their root node.

Another way to overcome the necessity for synchronized

clocks is to measure path delay based on the round-trip time
(RTT) between all pairs of leaf nodes i and j. As opposed to

sandwich probing the RTT measurements are not conducted

from a single sender node s. Instead, each leaf node l ∈ L
(L is the set of leaf/end nodes) conducts its on measure-

ments. However, the overall measurement complexity (i.e.

the number of messages that must be transfered to obtain

γi,j for all pairs of i, j ∈ L) is still O(|L|2). As a small

RTT ri,j between two leaf nodes i and j indicates a close

proximity in the inferred logical routing tree, the similarity

value γi,j must be defined as 1
ri,j

.

B. Accuracy of the Inferred Topologies

To assess the accuracy of the inferred topologies that

can be achieved based on end-to-end latency measurements

in paravirtualized environments we collected samples for

γi,j using both sandwich as well as RTT probing. For the

sandwich probing, we set the delay between the two small

packets to d = 10 milliseconds. We also experimented with

other values for d, however, found this one to provide the

best overall results. In total, we collected approximately

50 probes for each pair of leaf nodes, each measurement

technique, each level of background traffic, and each virtu-

alization technology. For the actual clustering we used the

ALT algorithm as proposed by Castro et al. [13].

Figure 6 shows the accuracy of the inferred topologies for

KVM as well as XEN-based VMs and sandwich as well as

RTT-based probing against different levels of background

traffic. The accuracy of the inferred network topology is

expressed as the distance between the inferred and the real

topology in the Robinson-Foulds metric [23]. The distance

between two labeled trees in the Robinson-Foulds metric is

essentially the number of edges that must be inserted/deleted

to transfer one tree into the other.

Note that the inferred tree produced by the ALT algorithm

as always binary [13]. Although there exist algorithms that
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Figure 6: Accuracy of the inferred topologies against back-

ground traffic using the ALT algorithm

can also infer network topologies based on general trees,

these algorithms also typically start by constructing a binary

tree first and then apply stochastic methods to transform

the binary tree into a likely general one [7], [22]. Hence,

the constructed binary tree can be regarded as a robust

starting point for the topology inference process. If an

inference algorithm is unable to estimate a network topology

accurately based on a binary tree, it will not be able to

estimate it accurately based on a general tree either. We

will present an approach to transfer the binary tree into a

general tree in the next subsection.

In the absence of background traffic the average distance

of the inferred network topology tree to the real one centers

around 27 for both virtualization and probing techniques.

However, with increasing background traffic the accuracy

of those topologies that were inferred based on the sand-

wich probes starts to diminish. The reason for this can

be explained by the increasing delay for intra-host VM

communication under high background traffic.

As highlighted in Section III all packets which are passed

to the physical network experience a significant additional

delay even for moderate levels of background traffic. Al-

though we found those additional delays to be relatively

stable on a timescale of milliseconds, their variance is large

enough to blur the subtle delay differences of intra-host

VM communication. As a result, the delay differences for

all receiver VMs which do not run on the sender VM’s

host suffer from a large variance and therefore impede

the inference process in presence of background traffic. In

contrast to that, the topologies inferred based on the RTT

probes, where each VM issued its own probe packets, are

more stable towards increasing background traffic.

C. Transferring Binary Trees into General Trees

As pointed out in the previous subsection the topologies

inferred by the ALT algorithm always follow the structure

of a binary tree. Binary trees provide the largest number of

degrees of freedom and thus are able to fit the measured data

most closely [7]. Therefore they are a reasonable starting

point to unbiasedly contrast the impact of different probing

techniques on the inference accuracy.

However, the network topology in most data centers

can be rather described by a general tree. The inferred

binary tree can be considered an “overfitted” version of the

physical network tree which includes more internal nodes

than actually exist and therefore automatically decreases the

inference accuracy in most network setups.

To overcome the problem of overfitting, several methods

have been proposed (e.g. [7], [22]). Most of them apply

computationally demanding heuristics to reconstruct likely

general trees based on the initially inferred binary tree.

Since most inference approaches were designed for large-

scale networks like the Internet, which do not allow any

assumptions about the structure of the routing tree, these

heuristics are a reasonable choice. However, in contrast to

the Internet, the network structure in data centers is much

more regular. Typical network architectures of today’s data

centers consist of either two- or three-level trees of switches

or routers [24]. Hosting multiple VMs on one server might

add another level of depth to the tree but, for example, a

network topology tree with a depth of more than three in a

single IP subnet is very unlikely to occur in practice.

The extension we propose in the following exploits this

regularity. It is based on the assumptions that network

topology trees with a depth greater than d are unlikely to

occur. Moreover, it assumes that all leaf nodes are likely to

have a similar depth in a data center network topology tree.

Our extension is subdivided into two operations: The first

operation reroot takes the initial binary tree as input and

chooses that inner node as the tree’s new root node which

minimizes the difference between the leaf nodes with the

highest and the lowest depth. The operation accounts for the

fact that the root node created by the clustering algorithm is

not necessarily correct. For example, when using sandwich

probing, the root node of the inferred binary tree is always

the source of probe packets s. The rerooted tree is then

passed to the second operation limitDepth(d). This

operation continuously identifies the leaf node with the

highest depth, cuts it out, and appends it to its former

parent’s parent node as long as the depth of the tree is greater

than d. Figure 7 illustrates the impact of our extension on

the inference accuracy for different values of d. Compared

to the initial binary tree (Figure 6) our extension reduces the

Robinson-Foulds distance to the actual tree which represents

our testbed’s network topology by 16 to 21 (depending on

d) on an average. To improve legibility we only show the
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results for KVM (paravirt.) and omit confidence intervals.
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Figure 7: Accuracy of the inferred topologies using the ALT

algorithm and the depth limitation

V. CONCLUSION

In this paper we examined to what extent the physical

network topology of VMs inside an IaaS cloud can be

inferred through end-to-end measurements. Therefore, we

provided an initial analysis of the network path character-

istics loss and delay and examined the impact of hardware

virtualization using the open source hypervisors KVM and

XEN. Based on this analysis, we contrasted the accuracy

of the inferred topologies for two different latency-based

measurement approaches. Finally, we proposed an extension

to existing clustering-based inference algorithms. This exten-

sion allows to transform overfitted binary trees into general

trees which are likely to describe the network topology of a

cloud data center.

In sum, we can conclude that topology inference in

IaaS clouds is a challenging subject. Even under moderate

system load hardware virtualization has a significant effect

on the measurable network path characteristics and destroys

important correlation properties which are assumed by most

inference approaches. Among all conducted experiments on

our mid-size cloud testbed, RTT-based delay measurements

led to the most accurate inference results with an average

Robinson-Foulds distance to the actual topology of under

6. However, we also observed large delays introduced by

the virtualization layers (especially KVM) under high back-

ground traffic. In our opinion, the variance of these delays

currently leaves little potential to reliably infer passive

network components like link layer switches.

In general, we think our work represents a valuable

contribution to the current efforts of porting data-intensive

distributed applications to the cloud. For future work we

are curious to follow new developments in the field of

virtualization. In particular, we think hardware-assisted I/O

virtualization has a strong potential to reduce the current I/O

overhead and can have a positive effect on the performance

of topology inference.
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APPENDIX

All experiments presented in this paper have been con-

ducted on our local IaaS cloud testbed. The testbed consisted

of eight physical servers with the following configuration:

CPU Two Intel Xeon 2.66 GHz CPUs (model E5430)
RAM 32 GB
Network Intel Corporation 80003ES2LAN 1 GB/s Ethernet (connected

to local 1 GB/s switch)
OS Gentoo Linux
Kernel 2.6.34-xen-r4 for XEN-based experiments, 2.6.32-gentoo-r7

otherwise

The interconnect between the servers was a 1 GBit/s

Ethernet network with an HP ProCurve 1800-24G switch.

During the experiments we deployed 64 VMs, eight VMs

per host, using the Eucalyptus cloud software [25].

We employed the two open-source virtualization tech-

niques XEN and KVM during our experiments. For the

KVM-based experiments we also distinguished between full

virtualization (with unmodified device drivers) and par-

avirtualization (with the modified virtio device drivers). A

detailed VM configuration is given in the following table:

CPU 1 CPU core
RAM 2 GB
Network Bridged network, device driver e1000 for KVM (full virt.),

virtio_net for KVM (paravirt.), and xennet for XEN
OS Ubuntu Linux 9.10 (Karmic Koala)
Kernel 2.6.31-22-server for XEN, 2.6.32-gentoo-r7 otherwise

To generate the background traffic during the experiments

we devised a small auxiliary program which was executed

on each VM during our experiments. The program was

capable of generating UDP traffic at an adjustable data rate.

Each generated UDP packet carried 8 KByte of payload.

To achieve a fair mixture between inter-host and intra-host

traffic, we setup four VMs on each physical host to exchange

background traffic among each other while the other four

VMs transmitted data to VMs on a different host. So, for

example, at a background traffic level of 50 MBit/s, all eight

VMs generated network traffic at 50 MBit/s. However, only

four VMs actually utilized the physical network.

All the time, the testbed was dedicated to our experiments.

Thus, side effects from other applications can be excluded.
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