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ABSTRACT
Executing data-parallel iterative algorithms on large datasets is cru-
cial for many advanced analytical applications in the fields of data
mining and machine learning. Current systems for executing itera-
tive tasks in large clusters typically achieve fault tolerance through
rollback recovery. The principle behind this pessimistic approach
is to periodically checkpoint the algorithm state. Upon failure, the
system restores a consistent state from a previously written check-
point and resumes execution from that point.

We propose an optimistic recovery mechanism using algorithmic
compensations. Our method leverages the robust, self-correcting
nature of a large class of fixpoint algorithms used in data mining
and machine learning, which converge to the correct solution from
various intermediate consistent states. In the case of a failure, we
apply a user-defined compensate function that algorithmically cre-
ates such a consistent state, instead of rolling back to a previous
checkpointed state. Our optimistic recovery does not checkpoint
any state and hence achieves optimal failure-free performance with
respect to the overhead necessary for guaranteeing fault tolerance.

We illustrate the applicability of this approach for three wide
classes of problems. Furthermore, we show how to implement
the proposed optimistic recovery mechanism in a data flow sys-
tem. Similar to the Combine operator in MapReduce, our proposed
functionality is optional and can be applied to increase performance
without changing the semantics of programs.

In an experimental evaluation on large datasets, we show that
our proposed approach provides optimal failure-free performance.
In the absence of failures our optimistic scheme is able to outper-
form a pessimistic approach by a factor of two to five. In presence
of failures, our approach provides fast recovery and outperforms
pessimistic approaches in the majority of cases.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Parallel Databases
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1. INTRODUCTION
In recent years, the cost of acquiring and storing data of unprece-

dented volume has dropped significantly. As the technologies to
process and analyze these datasets are being developed, we face
previously unimaginable new possibilities. Businesses can apply
advanced data analysis for data-driven decision making and pre-
dictive analytics. Scientists can test hypotheses on data several or-
ders of magnitude larger than before, and formulate hypotheses by
exploring large datasets.

The analysis of the data is typically conducted using parallel
processing platforms in large, shared-nothing commodity clusters.
Statistical applications have become very popular, especially in the
form of graph mining and machine learning tasks. Many of the
algorithms used in these contexts are of iterative or recursive na-
ture, repeating some computation until a termination condition is
met. Their execution imposes serious overhead when carried out
with paradigms such as MapReduce [12], where every iteration is
scheduled as a separate job and re-scans iteration-invariant data.
These shortcomings have led to the proposition of specialized sys-
tems [24, 25], as well as to the integration of iterations into data
flow systems [8, 14, 26, 27, 31].

The unique properties of iterative tasks open up a set of research
questions related to building distributed data processing systems.
We focus on improving the handling of machine and network fail-
ures during the distributed execution of iterative algorithms. We
concentrate on problems where the size of the evolved solution
is proportional to the input size and must therefore be partitioned
among the participating machines in order to scale to large datasets.
The traditional approach to fault tolerance under such circumstances
is to periodically persist the application state as checkpoints and,
upon failure, restore the state from previously written checkpoints
and restart the execution. This pessimistic method is commonly
referred to as rollback recovery [13].

We propose to exploit the robust nature of many fixpoint algo-
rithms used in data mining to enable an optimistic recovery mech-
anism. These algorithms will converge from many possible inter-
mediate states. Instead of restoring such a state from a previously
written checkpoint and restarting the execution, we propose to ap-
ply a user-defined, algorithm-specific compensation function. In
case of a failure, this function restores a consistent algorithm state
and allows the system to continue the execution. Our proposed
mechanism eliminates the need to checkpoint intermediate state for
such tasks.

We show how to extend the programming model of a parallel
data flow system [3] to allow users to specify compensation func-
tions. The compensation function becomes part of the execution
plan, and is only executed in case of failures.



In order to show the applicability of our approach to a wide va-
riety of problems, we explore three classes of problems that re-
quire distributed, iterative data processing. We start by looking
at approaches to carry out link analysis and to compute centrali-
ties in large networks. Techniques from this field are extensively
used in web mining for search engines and social network anal-
ysis. Next, we describe path problems in graphs which include
standard problems such as reachability and shortest paths. Last, we
look at distributed methods for factorizing large, sparse matrices,
a field of high importance for personalization and recommendation
mining. For each class, we discuss solving algorithms and provide
blueprints for compensation functions. A programmer or library
implementor can directly use these functions for algorithms that
fall into these classes.

Finally, we evaluate our proposed recovery mechanism by ap-
plying several of the discussed algorithms to large datasets. We
compare the effort necessary to reach the solution after simulated
failures with traditional pessimistic approaches and our proposed
optimistic approach. Our results show that our proposed recov-
ery mechanism provides optimal failure-free performance. In case
of failures, our recovery mechanism is superior to pessimistic ap-
proaches for recovering algorithms that incrementally compute their
solution. For non-incremental algorithms that recompute the whole
solution in each iteration, we find our optimistic scheme to be supe-
rior to pessimistic approaches for recovering from failures in early
iterations. This motivates the need for a hybrid approach which we
plan to investigate as future work.

1.1 Contributions and Organization
The contributions of this paper are the following:

(1) We propose a novel optimistic recovery mechanism that does
not checkpoint any state. Therefore, it provides optimal failure-free
performance and simultaneously uses less resources in the cluster
than traditional approaches.
(2) We show how to integrate our recovery mechanism into the pro-
gramming model of a parallel data flow system [3].
(3) We investigate the applicability of our approach to three impor-
tant classes of problems: link analysis and centrality in networks,
path problems in graphs, and matrix factorization. For each class
we provide blueprints for generic compensation functions.
(4) We provide empirical evidence that shows that our proposed
approach has optimal failure-free performance and fast recovery
times in the majority of scenarios.

The rest of the paper is organized as follows. Section 2 positions
the proposed optimistic recovery mechanism in relation to existing
approaches. Section 3 introduces a parallel programming model
for fixpoint algorithms. Sections 4 discusses how to integrate the
optimistic recovery for iterations into data flow systems. Section 5
introduces three wide classes of problems for which our proposed
recovery mechanism can be applied. Section 6 presents our exper-
imental evaluation. Finally, Sections 7 and 8 discuss related work,
conclude, and offer future research directions.

2. A CASE FOR OPTIMISTIC RECOVERY
Realizing fault tolerance in distributed data analysis systems is

a complex task. The optimal approach to fault tolerance depends,
among other parameters, on the size of the cluster, the character-
istics of the hardware, the duration of the data analysis program,
the duration of individual stages of the program (i.e., the duration
of an iteration in our context), and the progress already made by
the program at the time of the failure. Most fault tolerance mech-
anisms introduce overhead during normal (failure-free) operation,

and recovery overhead in the case of failures [13]. We classify re-
covery mechanisms for large-scale iterative computations in three
broad categories, ranging from the most pessimistic to the most
optimistic: operator-level pessimistic recovery, iteration-level pes-
simistic recovery, and the optimistic recovery mechanism proposed
in this paper. Pessimistic approaches assume a high probability of
failure, whereas optimistic approaches assume low failure proba-
bility.

Operator-level recovery, implemented in MapReduce [12], check-
points the result of every individual program stage (the result of the
Map stage in MapReduce). Its sweet spot is very large clusters
with high failure rates. This recovery mechanism trades very high
failure-free overhead for rapid recovery. In the iterative algorithms
setting, such an approach would be desirable if failures occur at ev-
ery iteration, where such an approach would be the only viable way
to allow the computation to finish.

For iterative algorithms, the amount of work per iteration is of-
ten much lower than that of a typical MapReduce job, rendering
operator-level recovery an overkill. However, the total execution
time across all iterations may still be significant. Hence, specialized
systems for iterative algorithms typically follow a more optimistic
approach. In iteration-level recovery, as implemented for exam-
ple in graph processing systems [24, 25], the result of an iteration
as a whole is checkpointed. In the case of failure, all participating
machines need to revert to the the last checkpointed state. Iteration-
level recovery may skip checkpointing some iterations, trading bet-
ter failure-free performance for higher recovery overhead in case
of a failure. For pessimistic iteration-level recovery to tolerate ma-
chine failures, it must replicate the data to checkpoint to several
machines, which requires extra network bandwidth and disk space
during execution. The overhead incurred to the execution time is
immense, in our experiments, we encounter that iterations where a
checkpoint is taken take up to 5 times longer than iterations with-
out a checkpoint. Even worse, a pessimistic approach always incurs
this overhead, regardless whether a failure happens or not. An ex-
treme point of iteration-level recovery is “no fault tolerance”, where
checkpoints are never taken, and the whole program is re-executed
from scratch in the case of a failure.

On the contrary, our proposed optimistic recovery approach never
checkpoints any state. Thus, it provides optimal failure-free perfor-
mance, as its failure-free overhead is virtually zero (Section 6 ex-
perimentally validates this) and at the same time, it requires much
less resources in the cluster compared to a pessimistic approach.
Furthermore, our optimistic approach only incurs overhead in case
of failures, in the form of additional iterations required to compute
the solution.

Figure 1 illustrates the optimistic recovery scheme for iterative
algorithms: Failure-free execution proceeds as if no fault tolerance
is desired. In case of a failure, we finish the current iteration ig-
noring the failed machines and simultaneously acquire new ma-
chines, which initialize the relevant iteration-invariant data parti-
tions. Then, the system applies a user-supplied piece of code, that
implements a compensate function, on every machine. The com-
pensation function sets the algorithm state to a consistent state from
which the algorithm will converge (e.g., if the algorithm computes
a probability distribution, the compensation function could have to
make sure that all partitions sum to unity). After that, the system
proceeds with the execution. The compensation function can be
thought of as bringing the computation “back on track”, where the
errors introduced by the data loss are corrected by the algorithm
itself in the subsequent iterations.

In all of our experiments, the optimistic approach shows to be
superior, as running additional iterations with a compensation func-
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Figure 1: Optimistic recovery with compensations illustrated.

tion results in a shorter overall execution time than writing check-
points and repeating iterations with a pessimistic approach. There-
fore, we conjecture that our proposed approach is the best fit for
running iterative algorithms on clusters with moderate failure rates,
given that a compensation for the algorithm to execute is known.
Note that for many algorithms, it is easy to write a compensa-
tion function whose application will provably lead the algorithm
to convergence (cf., Section 5, where we provide those for a va-
riety of algorithms). Our experiments in Section 6 show that our
proposed optimistic recovery combines optimal failure-free perfor-
mance with fast recovery and at the same time outperforms a pes-
simistic approach in the vast majority of cases.

3. PRELIMINARIES

3.1 Fixpoint Algorithms
We restrict our discussion to algorithms that can be expressed

by a general fixpoint paradigm taken from Bertsekas and Tsitsiklis
[4]. Given an n-dimensional state vector x ∈ Rn, and an update
function f(x) : Rn → Rn, each iteration consists of an application
of f to x: x(t+1) = f(x(t)). The algorithm terminates when we
find the fixpoint x∗ of the series x(0), x(1), x(2), . . . , such that
x∗ = f(x∗).

The update function f is decomposed into component-wise up-
date functions fi. The function fi(x) updates component x(t)i such
that x(t+1)

i = fi(x
(t)
1 , x

(t)
2 , . . . , x

(t)
n ) for i = 1, . . . , n.

An update function fi might only depend on a few components
of the state x(t). The structure of these computational dependencies
of the data is described by the dependency graph Gdep = (N,E),
where the verticesN = {x1, . . . , xn} represent the components of
x, and the edges E represent the dependencies among the compo-
nents: (i, j) ∈ E ⇔ fi depends on xj .

The dependencies between the components might be subject to
additional parameters, e.g., distance, conditional probability, tran-
sition probability, etc, depending on the semantics of the applica-
tion. We denote the parameter of the dependency between com-
ponents xi and xj with aij . This dependency parameter can be
thought of as the weight of the edge eij in Gdep . We denote the
adjacent neighbors of xi inGdep, i.e., the computational dependen-
cies of xi, as Γi (cf. Figure 2).

3.2 Programming Model
We define a simple programming model for implementing iter-

ative algorithms based on the introduced notion of fixpoints. Each
algorithm is expressed by two functions. The first function is called
initialize and creates the components of the initial state x(0):

initialize : i→ x
(0)
i

The second function, termed update, implements the compo-
nent update function fi. This function needs as input the states
of the components which xi depends on, and possibly parameters
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Figure 2: Adjacent neighbors Γi of xi in the dependency graph,
a representation of xi’s computational dependencies.

for these dependencies. The states and dependency parameters nec-
essary for recomputing component xi at iteration t are captured in
the dependency set D(t)

i = {(x(t)j , aij) |x(t)j ∈ Γi}. The function

computes x(t+1)
i from the dependency set D(t)

i :

update : D
(t)
i → x

(t+1)
i

We refer to the union D(t) of the dependency sets D(t)
i for all

components i as the workset.
In order to detect the convergence of the fixpoint algorithm in

distributed settings, we need two more functions. The function
aggregate : (x

(t+1)
i , x

(t)
i , agg) → agg incrementally computes

a global aggregate agg from the current value x(t+1)
i and the previ-

ous value x(t)i of each component xi. It is a commutative and asso-
ciative function. The function converged : agg → {true, false}
decides whether the algorithm has converged by inspecting the cur-
rent global aggregate.

Example: PageRank [29] is an iterative method for ranking web
pages based on the underlying link structure. Initially, every page
has the same rank. At each iteration, every page uniformly dis-
tributes its rank to all pages that it links to, and recomputes its rank
by adding up the partial ranks it receives. The algorithm converges
when the ranks of the individual pages do not change anymore.

For PageRank, we start with a uniform rank distribution by ini-
tializing each xi to 1

n
, where n is the total number of vertices in the

graph. The components of x are the vertices in the graph, each ver-
tex depends on its incident neighbors, and the dependency parame-
ters correspond to the transition probabilities between vertices. At
each iteration, every vertex recomputes its rank from its incident
neighbors proportionally to the transition probabilities:

update : D
(t)
i → 0.85

∑
D

(t)
i

aijx
(t)
j + 0.15

1

n
.

The aggregation function computes the L1-norm of the difference
between the previous and the current PageRank solution, by sum-
ming up the differences between the previous and current ranks,
and the algorithm converges when this difference becomes less than
a given threshold.

3.3 Parallel Execution
This fixpoint mathematical model is amenable to a simple paral-

lelization scheme. Computation of x(t+1)
i involves two steps:

1. Collect the states x(t)j and parameters aij for all dependen-
cies j ∈ Γi.

2. Form the dependency set D(t)
i , and invoke update to obtain

x
(t+1)
i .



Assume that the vertices of the dependency graph are repre-
sented as tuples (n, x

(t)
n ) of component index n and state x(t)n . The

edges of the dependency graph are represented as tuples (i, j, aij),
indicating that component xi depends on component xj with pa-
rameter aij . If the datasets containing the states and dependency
graph are co-partitioned, then the first step can be executed by a
local join between vertices and their corresponding edges on the
component index n = j. For executing step 2, the result of the join
is projected to the tuple (i, x

(t)
j , aij) and grouped on the component

index i to form the dependency setD(t)
i . The update function then

aggregates D(t)
i to compute the new state x(t+1)

i .
This parallelization scheme, which can be summarized by treat-

ing a single iteration as a join followed by an aggregation, is a spe-
cial case of the Bulk Synchronous Parallel (BSP) [32] paradigm.
BSP models parallel computation as local computation (the join
part) followed by message passing between independent processors
(the aggregation part). Analogously to the execution of a superstep
in BSP, we assume that the execution of a single iteration is syn-
chronized among all participating computational units.

4. INTEGRATING COMPENSATIONS

4.1 Fixpoint Algorithms as Data Flows
We illustrate and prototype our proposed recovery scheme using

a general data flow system with a programming model that extends
MapReduce. For implementation, we use Stratosphere [3], a mas-
sively parallel data analysis system which offers dedicated support
for iterations, a functionality necessary for efficiently running fix-
point algorithms [14]. In the following, we will use the operator
notation from Stratosphere. However, the ideas presented in this
paper are applicable to other data flow systems with support for
iterative or recursive queries.

To ensure efficient execution of fixpoint algorithms, Stratosphere
offers two distinct programming abstractions for iterations [14]. In
the first form of iterations, called bulk iterations, each iteration
completely recomputes the state vector x(t+1) from the previous
iteration’s result x(t).

Figure 3 shows a generic logical plan for modeling fixpoint algo-
rithms as presented in Section 3.2 using the bulk iteration abstrac-
tion (ignore the dotted box for now). The input consists of records
(n, x

(t)
n ) representing the components of the state x(t) on the one

hand, and of records (i, j, aij) representing the dependencies with
parameters on the other hand (cf. Section 3.3). The data flow pro-
gram starts with a “dependency join”, performed by a Match1 op-
erator, which joins the components x(t)i with their corresponding
dependencies and parameters to form the elements (i, x

(t)
j , aij)

of the dependency set D(t)
i . The “update aggregation” operator

groups the result of the join on the component index i to form the
dependency set D(t)

i , and applies the update function to compute
x
(t+1)
i from the dependency set. The “convergence check” opera-

tor joins and compares the newly computed state x(t+1)
i with the

previous state x(t)n on n = i. From the difference between the
components, the operator computes a global aggregate using the
aggregate function. A mechanism for efficient computation of
distributive aggregates, similar to the aggregators in Pregel [25],
invokes the converged function to decide whether to trigger a suc-
cessive iteration (for simplicity reasons we omit this from the fig-

1A Match is a second-order function performing an equi-join fol-
lowed by a user-defined first-order function applied to the join re-
sult [3].
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Figure 3: Bulk fixpoint algo-
rithm in Stratosphere.
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ure). If the algorithm has not converged, the “convergence check”
operator feeds the records (i, x

(t+1)
i ) that form x(t+1) into the next

iteration.
The second form of iterations, called incremental iterations [14],

are optimized for algorithms that only partially recompute the state
x(t) in each iteration. A generic logical plan for fixpoint algorithms
using this strategy is shown in Figure 4. Like the bulk iteration
variant, the plan models the two steps from the fixpoint model de-
scribed in Section 3.3. It differs from the bulk iteration plan in that
it does not feed back the entire state at the end of an iteration, but
only the dependency sets D(t)

i for the fraction of components that
will be updated in the next iteration (c.f., the feedback edge from
the “recreate dependencies” operator to the workset in Figure 4).
The system updates the state of the algorithm using the changed
components rather than fully recomputing it. Hence, this plan ex-
ploits the fact that certain components converge earlier than others,
as dependency sets are fed back selectively only for those compo-
nents whose state needs to be updated. In addition to the two inputs
from the bulk iteration variant, this plan has a third input with the
initial version of the workset D(0). The creation of D(0) depends
on the semantics of the application, but in most cases, D(0) is sim-
ply the union of all initial dependency sets.

In Figure 4, the “candidate creation” operator groups the ele-
ments of the workset on the component index i to form the de-
pendency sets D(t)

i and applies the update function to compute
a candidate update for each x(t+1)

i from the corresponding depen-
dency set. The “state update” operator joins the candidate with
the corresponding component from x(t) on the component index
i and decides whether to set x(t+1)

i to the candidate value. If an
update occurs, the system emits a record (i, x

(t+1)
i ) containing the

updated component to the “recreate dependencies” operator, which
joins the updated components with the dependencies and parame-
ters. In addition, the records are efficiently merged with the current
state (e.g., via index merging - see rightmost feedback edge in the
figure). As in the bulk iteration variant, we represent the depen-
dencies as (i, j, aij), and join them on j = i. The operator emits
elements of the dependency sets to form the worksetD(t+1) for the
next iteration. The algorithm converges when an iteration creates
no new dependency sets, i.e. when the workset D(t+1) is empty.
We restrict ourselves to algorithms that follow the plans of Fig-
ures 3 and 4, where the dataset holding the dependencies can be
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either a materialized or a non-materialized view, i.e., it may be the
result of an arbitrary plan.

4.2 Recovering Bulk Iterations
To integrate optimistic recovery to the bulk iterations model, we

introduce a “compensate” operator that takes as input the current
state of components x(t) (dotted box in Figure 3). The output of
the compensation operator is input to the dependency join operator.
The system only executes the compensate operator after a failure:
e.g., in case of a failure at iteration t, the system finishes the cur-
rent iteration and activates the additional operator in the plan for
iteration t+ 1.

We note that the compensate operator can be an arbitrary plan in
itself. However, we found that compensation functions embedded
in a simple Map operator are adequate for a wide class of algo-
rithms (see Section 5). In addition, using a compensation function
embedded in a Map operator ensures fast recovery times without
the need for data shuffling. The compensation function often lever-
ages lightweight meta-data from previous iterations that are stored
in a distributed fault-tolerant manner using a distributed locking
service [9].

PageRank: Figure 5 shows the data flow plan, derived from the
general plan in Section 4.1, for the PageRank algorithm.

The initial state x(0) consists of all pages p and initial ranks r.
The dependencies (s, t, prob) consist of the edges s → t of the
graph, weighted by the transition probability prob from page s to
page t. The “find neighbors” operator joins the pages with their
outgoing links on p = s and creates tuples (t, c) holding the par-
tial rank c = r ∗ prob for the neighbors. The “recompute ranks”
operator groups the result of the “find neighbors” join on the tar-
get page t to recompute its rank using PageRank’s update formula:
0.85∗

∑
c+0.15/n. It emits a tuple (t, rnew) that contains the new

rank to the “compare to old rank” operator, which joins these tuples
with the previous ranks on p = t and initiates the distributed aggre-
gation necessary for the convergence check. Finally, the “compare
to old rank” operator emits tuples (p, r) containing the pages and
recomputed ranks. If PageRank has not converged, these tuples
form the input to the next iteration t+ 1.

In case of a failure, the system activates the additional Map op-
erator called “fix ranks” in the plan, as shown in Figure 5. This op-
erator executes the compensation function. A simple compensation
approach is to re-initialize the ranks of vertices in failed partitions
uniformly and re-scale the ranks of the non-failed vertices, so that
all ranks still sum to unity (cf. Algorithm 1). A requirement for this

mechanism is that the system knows the total number of vertices n,
and keeps an aggregate statistic about of the current number of ver-
tices nnonfailed and the current total rank rnonfailed. Note that these
statistics can be maintained at virtually zero cost when computed
together with the convergence check by the distributed aggregation
mechanism.

Algorithm 1 Compensation function for PageRank.
1: function FIX-RANKS-UNIFORM((pid, r), (n, nnonfailed, rnonfailed))
2: if pid is in failed partition then return (pid, 1/n)
3: else return (pid, (nnonfailed · r)/(n · rnonfailed))

4.3 Recovering Incremental Iterations
Analogously to bulk iterations, we compensate a large class of

incremental iterations by a simple Map operation, applied to the
state at the beginning of the iteration subsequent to a failure. Addi-
tionally, for incremental iterations, the system needs to recreate all
dependency sets required to recompute the lost components. This is
necessary because the recomputation of a failed component might
depend on another already converged component whose state is
not part of the workset anymore. In the plan from Figure 4, the
“recreate dependencies” operator produces dependency sets from
all components of the state that were updated in the failing itera-
tion, including components that were recreated or adjusted by the
compensation function. The system hence only needs to recreate
the necessary dependency sets originating from components that
were not updated in the failing iteration. To identify those non-
updated components, the “state-update” operator internally main-
tains a timestamp (e.g., the iteration number) for each component,
indicating its last update. In the iteration subsequent to a failure, a
record for each such component is emitted by the “state update”
operator to the “recreate dependencies” operator. The “recreate
dependencies” operator joins these record with the dependencies,
creating the dependency sets D(t+1) for all components depend-
ing on it. From the output of the “recreate dependencies” operator,
we prune all elements that do not belong to a lost component from
these extra dependency sets2. By means of this optimization, the
system does not unnecessarily recompute components that did not
change in their dependent components and are not required for re-
computing a failed component.

Connected Components [21]: This algorithm identifies the con-
nected components of an undirected graph, the maximum cardi-
nality sets of vertices that can reach each other. We initially as-
sign to each vertex v a unique numeric label which serves as the
vertex’s state xi. At every iteration of the algorithm, each ver-
tex replaces its label with the minimum label of its neighbors. In
our fixpoint programming model, we express it by the function
update : D

(t)
i → min

D
(t)
i

(x
(t)
j ). At convergence, the states of all

vertices in a connected component are the same label, the minimum
of the labels initially assigned to the vertices of this component.

Figure 6 shows a data flow plan for Connected Components, de-
rived from the general plan for incremental iterations discussed in
Section 4.1. There are three inputs. The initial state x(0) consists
of the initial labels, a set of tuples (v, l) where v is a vertex of the
graph and l is its label. Initially, each vertex has a unique label.
The dependencies and parameters for this problem map directly to
the graph structure, as each vertex depends on all its neighbors. We

2This is easily achieved by evaluating the partitioning function on
the element’s join key and checking whether it was assigned to a
failed machine.



represent each edge of the graph by a tuple (s, t), referring to the
source vertex s and target vertex t of the edge. The initial workset
D(0) consists of candidate labels for all vertices, represented as tu-
ples (v, l), where l is a label of v’s neighbor (there is one tuple per
neighbor of v).

Algorithm 2 Compensation function for Connected Components.
1: function FIX-COMPONENTS((v, c))
2: if v is in failed partition then return (v, v)
3: else return (v, c)

First, the “candidate label” operator groups the labels from the
workset on the vertex v and computes the minimum label lnew for
each vertex v. The “label update” operator joins the record contain-
ing the vertex and its candidate label lnew with the existing entry
and its label on v. If the candidate label lnew is smaller than the cur-
rent label l, the system updates the state x(t)v and the “label update”
operator emits a tuple (v, lnew) representing the vertex v with its
new label lnew. The emitted tuples are joined with the graph struc-
ture on s = v by the “label to neighbors” operator. This operator
emits tuples (t, l), where l is the new label and t is a neighbor ver-
tex of the updated vertex v. These tuples form the dependency sets
for the next iteration. As D(t+1) only contains vertices for which
a neighbor updated its label, we do not unnecessarily recompute
components of vertices without a change in their neighborhood in
the next iteration. The algorithm converges once the system ob-
serves no more label changes during an iteration by observing the
number of records emitted from the “label update” operator.

As discussed, the system automatically recomputes the neces-
sary dependency sets in case of a failure in iteration t. Therefore,
analogously to bulk iterations, the programmer’s only task is to pro-
vide a record-at-a-time operation which applies the compensation
function to the state x(t+1). Here, it is sufficient to set the label of
vertices in failed partitions back to its initial value (Algorithm 2).

5. COMPENSABLE PROBLEMS
In order to demonstrate the applicability of our proposed ap-

proach to a wide range of problems, we discuss three classes of
large-scale data mining problems which are solved by fixpoint al-
gorithms. For each class, we list several problem instances together
with a brief mathematical description and provide a generic com-
pensation function as blueprint.

5.1 Link Analysis and Centrality in Networks
We first discuss problems that compute and interpret the domi-

nant eigenvector of a large, sparse matrix representing a network.
A well known example of such a problem is PageRank [29], which
computes the relevance of web pages based on the underlying link
structure of the web. PageRank models the web as a Markov chain
and computes the chain’s steady-state probabilities. This reduces
to finding the dominant eigenvector of the transition matrix rep-
resenting the Markov chain. Related methods of ranking vertices
are eigenvector centrality [6] and Katz centrality [22] which in-
terpret the dominant eigenvector (or a slight modification of it) of
the adjacency matrix of a network. Another example of an eigen-
vector problem is Random Walk With Restart [21], which uses a
random walk biased towards a source vertex to compute the prox-
imity of the remaining vertices of the network to this source vertex.
LineRank [20] was recently proposed as a scalable substitute for
betweeness centrality, a flow-based measure of centrality in net-
works. Similarly to the previously mentioned techniques, it relies
on computing the dominant eigenvector of a matrix, in this case

the transition matrix induced by the line graph of the network. The
dominant eigenvector of the modularity matrix [28] can be used to
split the network into two communities of vertices with a higher
than expected number of edges between them.

Solutions for the problems of this class are usually computed by
some variant of the Power Method [18], an iterative algorithm for
computing the dominant eigenvector of a matrix M . An iteration
of the algorithm consists of a matrix-vector multiplication followed
by normalization to unit length. To model the Power Method as a
fixpoint algorithm, we operate on a sparse n × n matrix, whose
entries correspond to the dependency parameters. We uniformly
initialize each component of the estimate of the dominant eigen-
vector to 1√

n
. The update function computes the dot product of the

i-th row of the matrix M and the previous state x(t). We express
it by the function update : D

(t)
i → 1

‖x(t)‖2

∑
D

(t)
i

aijx
(t)
j in our

fixpoint programming model. The result is normalized by the L2-
norm of the previous state, which can be efficiently computed using
a distributed aggregation. The algorithm converges when the L2-
norm of the difference between the previous and the current state
becomes less than a given threshold.

For failure compensation, it is enough to uniformly re-initialize
the lost components to 1√

n
, as the power method will still provably

converge to the dominant eigenvector afterwards [18]:

compensate : x
(t)
i →

{
1√
n

if i belongs to a failed partition

x
(t)
i otherwise

This function suffices as base for compensating all of the above
problems when they are solved by the power method.

5.2 Path Enumeration Problems in Graphs
The second class of problems we discuss can be seen as variants

of enumerating paths in large graphs and aggregating their weights.
Instances of this problem class include single-source reachabil-
ity, single-source shortest paths, single-source maximum reliability
paths, minimum spanning tree [19], as well as finding the connected
components [21] of an undirected graph.

Instances of this problem class can be solved by the Generalized
Jacobi algorithm [19], which is defined on an idempotent semir-
ing (S,⊕,⊗). The state vector x(0) is initialized using the identity
element e of ⊗ for the source vertex identity element ε of ⊕ for
all other vertices. The algorithm operates on a given, application-
specific graph. The dependency parameters correspond to the edge
weights of this graph, taken from the set S, on which the semir-
ing is defined. At iteration t, the algorithm enumerates paths of
length t with relaxation operations, computes the weight of the
paths with the ⊗ operation and aggregates these weights with the
second, idempotent operation⊕. In our fixpoint programming model,
we express it by the function update : D

(t)
i →

⊕
D

(t)
i

(x
(t)
j ⊗aij).

The algorithm converges to the optimal solution when no com-
ponent of x(t) changes. For single-source shortest distances, the
algorithm works on the semiring (R∪∞,min,+). For all vertices
but the source, the initial distance is set to∞. At each iteration, the
algorithm tries to find a shorter distance by extending the current
paths by one edge, using relaxation operations. The obtained algo-
rithm is the well known Bellman-Ford algorithm. For single-source
reachability, the semiring used is ({0, 1},∧,∨). A dependency pa-
rameter aij is 1, if i is reachable from j and 0 otherwise. The set of
reachable vertices can then be found using boolean relaxation oper-
ations. Finally, in single-source maximum reliability paths, the goal
is to find the most reliable paths from a given source vertex to all
other vertices in the graph. A dependency parameter aij represents



the probability of reaching vertex j from vertex i. The semiring in
use is ([0, 1],max, ·).

To compensate failures in the distributed execution of the Gener-
alized Jacobi algorithm, we can simply re-initialize the components
lost due to failure to ε, the identity element of ⊕. Bellman-Ford,
for example, converges to the optimal solution from any start vector
x(0) which is element-wise greater than x∗ [4]:

compensate : x
(t)
i →


e if i is the source vertex
ε if i belongs to a failed partition
x
(t)
i otherwise

5.3 Low-Rank Matrix Factorization
A popular technique to analyze interactions between two types of

entities is low-rank matrix factorization. Problems in this field typ-
ically incorporate dyadic data, for example user-story interactions
in news personalization [11] or the ratings of users towards prod-
ucts in collaborative filtering [23]. The idea is to approximately
factor a sparsem×nmatrixM into the product of two matricesR
and C, such that M ≈ RC. The m× k matrix R models the latent
features of the entities represented by the rows of M (e.g., users),
while the k × n matrix R models the latent features of the entities
represented by the columns of M (e.g., news stories or products).
The strength of the relation between two different entities (e.g., the
preference of a user towards a product) can be computed by the dot
product r>i cj between their corresponding feature vectors ri from
R and cj from C in the low dimensional feature space.

Recently developed parallel algorithms for low-rank matrix fac-
torization, including Distributed Stochastic Gradient Descent [16]
and variations of Alternating Least Squares (ALS) [34] can be lever-
aged to distribute the factorization. Due to their simplicity and pop-
ularity, we focus on algorithms using the ALS technique. The goal
is to train a factorization that minimizes the empirical squared error
(mij − r>i cj)2 for each observed interaction between a row entity
i and a column entity j. This error is computed by comparing the
strength of each known interaction mij between two entities i and
j with the strength r>i cj predicted by the factorization.

In order to find a factorization, ALS repeatedly keeps one of the
unknown matrices fixed, so that the other one can be optimally re-
computed. That means for example, that ri, the i-th row of R, can
be recomputed by solving a least squares problem including the i-th
row of M and all the columns cj of C that correspond to non-zero
entries in the i-th row of M (cf. Figure 7). ALS then rotates be-
tween recomputing the rows ofR in one step and the columns of C
in the subsequent step until the training error converges.

≈ ×

M
m × n

R
m × k

C
k × n

Figure 7: Dependencies for recomputing a row of R.

In the case of a failure, we lose rows of R, columns of C and
parts of M . We compensate as follows: as we can always re-
read the lost parts of M from stable storage, we approximately
recompute lost rows of R and columns of C by solving the least
squares problems using the remaining feature vectors (ignoring the
lost ones). If all necessary feature vectors for a row of R or a col-

umn of C are lost, we randomly re-initialize it:

compensate : x
(t)
i →

{
random vector ∈ [0, 1]k if i is lost
x
(t)
i otherwise

Matrix factorization with ALS is a non-convex problem [16],
and our compensation function represents a jump in the parame-
ter space. While we do not formally prove that after compensation
the algorithm arrives at an equally good local minimum, we empir-
ically validate our approach in Section 6.3 to show its applicability
to real-world data.

6. EVALUATION
To evaluate the benefit of our proposed recovery mechanism, we

run experiments on large datasets and simulate failures. The exper-
imental setup for our evaluation is the following: the cluster con-
sists of 26 machines running Java 7, Hadoop’s distributed filesys-
tem (HDFS) 1.0.4 and a customized version of Stratosphere. Each
machine has two 4-core Opteron CPUs, 32 GB memory and four 1
TB disk drives.

We also run experiments with Apache Giraph [1], an open-source
implementation of Pregel [25]. The findings from these experi-
ments mirror those from the Stratosphere. We omit these experi-
ments for lack of space.

We use three publicy available datasets for our experiments: a
webgraph called Webbase3 [5], which consists of 1,019,903,190
links between 115,657,290 webpages, a snapshot of Twitter’s so-
cial network4 [10], which contains 1,963,263,821 follower links
between 51,217,936 users and a dataset of 717,872,016 ratings that
1,823,179 users gave to 136,736 songs in the Yahoo! Music com-
munity5.

6.1 Failure-free Performance
We compare our proposed optimistic approach to a pessimistic

strategy that writes distributed checkpoints. When checkpointing
is enabled, the checkpoints are written to HDFS in a binary for-
mat with the default replication factor of three. Analogously to the
approaches taken in Pregel and GraphLab, we checkpoint state as
well as communicated dependencies [24, 25]. We run each algo-
rithm with a degree of parallelism of 208 (one worker per core).

We look at the failure-free performance of optimistic and pes-
simistic recovery, in order to measure the overhead introduced by
distributed checkpointing. Figure 8 shows the application of PageR-
ank on the Webbase dataset. The x axis shows the iteration number
and the y axis shows the time (in seconds) it took the system to
complete the iteration. The algorithm converges after 39 iterations.
The runtime with checkpointing every iteration is 79 minutes, while
optimistic recovery reduces the runtime to 14 minutes. The perfor-
mance of the optimistic approach is equal to the performance of
running without a fault tolerance mechanism, with an iteration last-
ing roughly 20 seconds. We see that the pessimistic approach in-
troduces an overhead of more than factor 5 regarding the execution
time of every iteration that includes a checkpoint.

Writing checkpoints only at a certain interval improves this sit-
uation, but trades off the time it takes to write a checkpoint with
the time required to repeat the iterations conducted since the last
checkpoint in case of a failure. If we for example checkpoint every
fifth iteration, the incurred overhead to the runtime compared to the
optimal failure-free performance is still 82%, approximately 11.5

3http://law.di.unimi.it/webdata/webbase-2001/
4http://twitter.mpi-sws.org/data-icwsm2010.html
5http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Figure 8: Failure-free per-
formance of PageRank on
the Webbase dataset.
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Figure 9: Failure-free per-
formance of Connected
Components on the Twitter
dataset.

minutes. We see that the optimistic approach is able to outperform
a pessimistic one by a factor of two to five in this case. We note
that in these experiments, this was the only job running in the clus-
ter. In busy clusters, where a lot of concurrent jobs compete for
I/O and network bandwidth, the negative effect of the overhead of
checkpointing might be even more dramatic.

Figure 9 shows the failure-free performance of Connected Com-
ponents applied to the Twitter dataset. The checkpointing overhead
varies between the iterations, due to the incremental character of
the execution. With our optimistic approach, the execution takes
less than 5 minutes. Activating checkpointing in every iteration
increases the runtime to 19 minutes. We see that checkpointing
results in a 3× to 4× increased runtime during the first iterations
until the majority of vertices converge. Taking a checkpoint in the
first iteration takes even longer than running the whole job with our
optimistic scheme. After iteration 4, the majority of the state has
converged, which results in a smaller workset and substantially re-
duces the checkpointing overhead. Again, the optimistic approach
outperforms a pessimistic one that takes an early checkpoint by at
least a factor of two.

Our experiments suggest that the overhead of our optimistic ap-
proach in the failure-free case (collecting few global statistics us-
ing the distributed aggregation mechanism) is virtually zero. We
observe that, in the absence of failures, our prototype has the same
performance as Stratosphere with checkpointing turned off, there-
fore we conclude that it has optimal failure-free performance.

6.2 Recovery Performance
In the following, we simulate the failure of one machine, thereby

losing 8 parallel partitions of the solution. We simulate failures by
dropping the parts of the state x that were assigned to the failing
partitions in the failing iteration. Additionally, we discard 50% of
the messages sent from the failing partitions, simulating the fact
that the machine failed during the iteration and did not complete all
necessary inter-machine communication. After the failing iteration,
our prototype applies the compensation function and finishes the
execution. We do not include the time to detect a failure and acquire
a new machine into our simulations, as the incurred overhead would
be the same for both a pessimistic and an optimistic approach.

To evaluate the recovery of incremental iterations, we run the
Connected Components algorithm on the Twitter dataset. We simu-
late failures in different iterations and apply the compensation func-
tion. Figure 10 shows the overall number of iterations as well as
their duration. The figure illustrates that Connected Components
is very robust against failures when paired with our compensation
function. Single failures in iterations 4 and 6 do not produce ad-
ditional iterations, but only cause an increase in the runtime of the
after next iteration by 45 seconds (which amounts to an increase
of 15% in the overall runtime). This happens because the system
reactivates the neighbors of failed vertices in the iteration after the
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Figure 11: Runtime compar-
ison of Connected Compo-
nents on the Twitter dataset.

failure and by this, triggers the recomputation of the failed vertices
in the after next iteration. When we simulate multiple failures of
different machines during one run, we observe that this process
simply happens twice during the execution: The compensation of
failures in iterations 4 and 6 or 5 and 8 during on run produces an
overhead of approximately 35% compared to the failure-free exe-
cution. To investigate the effects of a drastic failure, we simulate a
simultaneous failure of 5 machines in iteration 4 and repeat this for
iteration 6. We again observe fast recovery: in both cases the over-
head is less than 30% compared to the failure-free performance.

In all experiments, the additional work caused by the optimistic
recovery amounts to small a fraction of the cost of writing a single
checkpoint in an early iteration. The execution with a compensated
single machine failure takes at most 65 seconds longer than the
failure-free run, while checkpointing a single early iteration alone
induces an overhead of two to five minutes. Additional to writing
the checkpoints, a pessimistic approach with a checkpointing inter-
val would have to repeat all the iterations since the last checkpoint.
Figure 11 illustrates the runtimes of a pessimistic approach (with a
checkpoint interval of 2 iterations) to our optimistic approach. The
times for the pessimistic approach are composed of the average ex-
ecution time, the average time for writing checkpoints and the exe-
cution time for iterations that need to be repeated. The figure lists
the runtime of both approaches for executions with no failures, a
single failure in iteration 4 and multiple failures during one run in
iterations 4 and 6. Figure 11 shows that our optimistic approach is
more than twice as fast in the failure-free case and at the same time
provides faster recovery than a pessimistic approach in all cases.

The robustness in Connected Components is due to the sparse
computational dependencies of the problem. Every minimum label
propagates through its component of the graph. As social networks
typically have a short average distance between vertices, the ma-
jority of the vertices find their minimum label relatively early and
converge. After failure compensation in a later iteration, most ver-
tices have a non-failed neighbor that has already found the mini-
mum label, which they immediately receive and converge.

In order to evaluate the recovery of bulk iterations, we run PageR-
ank on the Webbase dataset until convergence. We simulate fail-
ures in different iterations of PageRank and measure the number of
iterations it takes the optimistic recovery mechanism to converge
afterwards. Figure 12 shows the convergence behavior for the sim-
ulated failures in different early iterations. The x axis shows the
iteration number. The y axis shows the L1-norm of the difference
of the current estimate x(t) of the PageRank vector in iteration t to
the PageRank vector x(t−1) in the previous iteration t− 1 in loga-
rithmic scale. We notice that the optimistic recovery is able to han-
dle failures in early iterations such as the third, tenth, or fifteenth
iteration extremely well with the compensation resulting only in
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gence of PageRank on the
Webbase dataset.
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parison of PageRank on
the Webbase dataset.

maximum 3 additional iterations (as can be seen in the right bot-
tom corner of Figure 12). In additional experiments, we observe
the same behavior for multiple failures during one run in early iter-
ations: failures in iterations 2 and 10 or 5 and 15 also only result in
at most 3 additional iterations. Next, we simulate a simultaneous
failure of five machines to investigate the effect of drastic failures:
such a failure costs no overhead when it happens in iteration 3 and
results in only 6 more iterations when it happens in iteration 10.

When we simulate failures in later iterations, we note that they
cause more overhead: a failure in iteration 25 needs 12 more iter-
ations to reach convergence, while a failure in iteration 35 triggers
22 additional iterations compared to the failure-free case. This be-
havior can be explained as follows: a compensation can be thought
of as a random jump in the space of possible intermediate solutions.
In later iterations, the algorithm is closer to the fixpoint, hence the
random jump increases the distance to the fixpoint with a higher
probability than in early iterations where the algorithm is far from
the fixpoint. For a failure in iteration 35, executing these additional
22 iterations would incur an overhead of approximately eight min-
utes. Compared to a pessimistic approach with a checkpoint in-
terval of five, the overhead is still less, as the pessimistic approach
would have to restart from the checkpointed state of iteration 30 and
again write a total of 7 checkpoints, amounting to a total overhead
of more than 12 minutes. Figure 13 summarizes our findings about
PageRank and compares the runtimes of our optimistic scheme to
such a pessimistic approach with a checkpoint interval of five. The
times for the pessimistic approach comprise the average execution
time, the average time for writing checkpoints and the execution
time for iterations that need to be repeated. We see that the opti-
mistic approach outperforms the pessimistic one by nearly a factor
of two in the failure-free case and for all cases, its overall runtime
is shorther in light of failures.

For failures in later iterations, our findings suggest that hybrid
approaches which use the optimistic approach for early iterations
and switch to a pessimistic strategy later are needed. The decision
when to switch could be made by observing the slope of the con-
vergence rate. Once it starts flattening, the algorithm comes closer
to the fixpoint and it would be beneficial to switch to a checkpoint-
based recovery strategy. We plan to investigate this as part of our
future work.

6.3 Empirical Validation of Compensability
We did not provide a formal proof for the compensability of Al-

ternating Least Squares for low-rank matrix factorization discussed
in Section 5.3. However, we can empirically validate that our opti-
mistic approach is applicable to this algorithm. We use the Yahoo
Songs dataset for this. To show the compensability of Alternating
Least Squares, we implement a popular variant of the algorithm
aimed at handling ratings [34] as data flow program (cf., Figure 14).

Collect-ItemFeatures
Match

ratings

Compute-UserFeatures
Reduce

Collect-UserFeatures
Match

Compute-ItemFeatures
Reduce

ratings

items

Reinit-Features
Map

Figure 14: ALS as fixpoint
algorithm in Stratosphere.
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Figure 15: Optimistic recov-
ery of failures in ALS on the
Yahoo Songs dataset.

Next, we simulate failures while computing a factorization of rank
10. We simulate a single failure in iteration 5, a single failure in it-
eration 10 and finally have a run with multiple failures where both
failures happen after another. We measure the training error (by
the root mean squared error, RMSE, shown in Figure 15) of the
factorization over 15 iterations. Our results show that failures re-
sult in a short increase of the error, yet until iteration 15, the error
again equals that of the failure-free case. These results indicate that
the ALS algorithm paired with the provided compensation strategy
described in Section 5.3 is very robust to all failures, which only
cause a short-lived distortion in the convergence behavior. We also
repeat this experiment for the Movielens6 dataset, where the results
mirror our findings.

7. RELATED WORK
Executing iterative algorithms efficiently in parallel has received

a lot of attention recently, resulting in graph-based systems [24,25],
and in the integration of iterations into data flow systems [7,14,26,
27,31]. The work proposed in this paper is applicable to all systems
that follow a data flow or a vertex-centric programming paradigm.

While the robust characteristics of fixpoint algorithms have been
known for decades, we are not aware of an approach that leverages
these characteristics for the recovery of distributed, data-parallel
execution of such algorithms. Rather, most distributed data pro-
cessing systems [12, 25], distributed storage systems [17], and re-
cently real-time analytical systems [33] use pessimistic approaches
based on periodic checkpointing and replay to recover lost state.

Systems such as Spark [31] offer recovery by recomputing lost
partitions based on their lineage. The complex data dependencies
of fixpoint algorithms however may require a full recomputation of
the algorithm state. While the authors propose to use efficient in-
memory checkpoints in that case, such an approach still increases
the resource usage of the cluster, as several copies of the data to
checkpoint have to be held in memory. During execution such a
recovery strategy competes with the actual algorithm in terms of
memory and network bandwidth.

Confined Recovery [25] in Pregel limits recovery to the parti-
tions lost in a failure. The state of lost partitions is recalculated
from the logs of outgoing messages of all non-failed machines in
case of a failure. Confined recovery is still a pessimistic approach,
which requires an increase in the amount of checkpointed data, as
all outgoing messages of the system have to be logged.

Similar to our compensation function, user-defined functions to
enable optimistic recovery have been proposed for long-lived trans-

6http://www.grouplens.org/node/73



actions. The ConTract Model is a mechanism for handling long-
lived computations in a database context [30]. Sagas describe the
concept of breaking long lived-transactions into a collection of sub-
transactions [15]. In such systems, user-defined compensation ac-
tions are triggered in response to violations of invariants or failures
of nested sub-transations during execution.

8. CONCLUSIONS AND OUTLOOK
We present a novel optimistic recovery mechanism for distributed

iterative data processing using a general fixpoint programming model.
Our approach eliminates the need to checkpoint to stable storage.
In case of a failure, we leverage a user-defined compensation func-
tion to algorithmically bring the intermediary state of the iterative
algorithm back into a form from which the algorithm still converges
to the correct solution. Furthermore, we discuss how to integrate
the proposed recovery mechanism into a data flow system.

We model three wide classes of problems (link analysis and cen-
trality in networks, path enumeration in graphs, and low-rank ma-
trix factorization) as fixpoint algorithms and describe generic com-
pensation functions that in many cases provably converge.

Finally, we present empirical evidence that shows that our pro-
posed optimistic approach provides optimal failure-free performance
(virtually zero overhead in absence of failures). At the same time,
it provides faster recovery in the majority of cases. For incremen-
tally iterative algorithms, the recovery overhead of our approach is
less than a fifth of the time it takes a pessimistic approach to only
checkpoint an early intermediate state of the computation. For re-
covery of early iterations of bulk iterative algorithms, the induced
overhead to the runtime is less than 10% and again our approach
outperforms a pessimistic one in all evaluated cases.

In future work, we plan to investigate whether the compensa-
tion function can be automatically derived from invariants present
in the algorithm definition. We would also like to find compen-
sation functions for an even broader class of problems. Our ex-
periments suggest that optimistic recovery is less effective for bulk
iterative algorithms when the algorithm is already close to the fix-
point. Therefore, we plan to explore the benefits of a hybrid ap-
proach that uses optimistic recovery in early stages of the execution
and switches to pessimistic recovery later. Finally, we would like to
leverage memory-efficient probabilistic data structures for storing
statistics to create better compensation functions.
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