
Ask “what,”
not “how”

Kostas Tzoumas

Data is an important asset
video & audio streams, sensor data, RFID, GPS, user online

behavior, scientific simulations, web archives, ...

Volume
Handle petabytes of data

Velocity
Handle high data arrival rates

Variety
Handle many heterogeneous data sources

Veracity
Handle inherent uncertainty of data2

3

Data

Analysis

Four “I”s for Big Analysis
text mining, interactive and ad hoc analysis, machine

learning, graph analysis, statistical algorithms

Iterative
Model the data, do not just describe it

Incremental
Maintain the model under high arrival rates

Interactive
Step-by-step data exploration on very large data

Integrative
Fluent unified interfaces for different data models4

5

M
ap

“Romeo, Romeo,
wherefore art thou
Romeo?”

“What, art thou
hurt?”

(Romeo, 1)
(Romeo, 1)
(wherefore, 1)
(art, 1)
(thou, 1)
(Romeo, 1)

(What, 1)
(art, 1)
(thou, 1)
(hurt, 1)

M
ap

Re
du

ce
Re

du
ce

(Romeo, (1,1,1))
(art, (1,1))
(thou, (1,1))

(wherefore, 1)
(What, 1)
(hurt, 1)

(Romeo, 3)
(art, 2)
(thou, 2)

(wherefore, 1)
(What, 1)
(hurt, 1)

Data shuffled
over network

Data written
to disk

MapReduce
and Hadoop

Map Reduce

Cross Match CoGroup

40

6

SQL analytics
with Hadoop

M
ap

Re
du

ce

M
ap

Re
du

ce

M
ap

Re
du

ce

� Lacking in
declarativity

� HDFS-based
data exchange
� Sort the only
grouping operator
� Hadoop engine
tailored to simple
aggregations

Pitfalls:

MapReduce

NoMapReduce

SQL

BigSQL

BigAnalytics

8

Advanced
Analytics
Analytics that model the data to reveal hidden
relationships, not just describe the data.

E.g., machine learning, statistics, graph analysis

Increasingly important from a market perspective.

Very different than SQL analytics: different languages and
access patterns (iterative vs. one-pass programs).

Hadoop toolchain poor; R, Matlab, etc not parallel.

9

Manufacturing
Example: Data-driven quality
control and assurance, demand
forecasting, sales and operation
planning, process optimization

Retail
Example: Improve campaign ROI
by optimizing advertising channels,
market basket analysis, fraud
detection, social trend analysis,
product recommendation

Travel and tourism
Example: Improve personalized customer
experience in hotels, estimate no-show in
flights, route planning

Social and e-commerce
Example: Targeted customer experience,
explore new business models, real-time
recommendations, social graph analysis,
game analytics

Media and Communications
Example: Risk management, analytics on
phone call logs, risk management,
sentiment analysis, clickstream and call
analysis

Use case in
all verticals

10

Big data lives in Hadoop. Hadoop clusters
offer very low effective storage cost, and are
becoming a data vortex, attracting cross-
departmental data.

Companies want to perform advanced and
predictive analytics to maximize ROI of their
data assets by modeling the data, not just
describing it.

How do we bring
advanced analytics to
the world of big data?

11

people with data
analysis skills

Big data
consumers now

Big data consumers in
the future

systems
programming

experts

What,
not how
Recipe for success:
declarativity
User specifies what information to
extract out of the data, not how
the system extracts the information.

This is what relational databases
pioneered in the 70s resulting in a
vibrant research community and a
billion dollar industry.

12

Desiderata for next-gen big
data platforms: Usability

10 million
Excel users

3 million
R users

70,000
Hadoop

users

“the market faces
certain challenges

such as unavailability
of qualified and

experienced work
professionals, who can
effectively handle the
Hadoop architecture.”

13

Desiderata for next-gen big
data platforms: Performance

0! 100! 200! 300! 400! 500! 600! 700!

Hadoop!

Stratosphere!

Performance difference from days to minutes enables
real time decision making and widespread use of data
within the organization.

14

How to lift
declarativity from
the closed world of
relational algebra to
the open world of
advanced analytics.

15

Step 1: Specify
//"get"the"customers"with"their"debit"
val"debits:((String,(Double)(=(sql(
(((("SELECT&customerId,&debit&FROM&customer_accounts;")
//"get"the"number"of"warned"invoices"in"the"last"
//"12"and"6"months
val"warnings:((String,(Int,(Int)(=(sql
"""""SELECT&R12.customerId,&R12.cnt,&R6.cnt
&&&&&&&&&&&&FROM&(…)&R12&LEFT&OUTER&JOIN&(…)&R6
&&&&&&&&&&&&&&ON&(R6.customerId&=&R12.customerId);")
//"number"of"contracts"a"customer"has
val"numContracts(:((String,(Int)(=(sql(
(((("SELECT&customerId,&numContracts&FROM&customers;")

//"join"the"data"into"one"data"point
case"class"DataPoint(x:(Vector,(y:(Double)

val(dataPoints(=(numContracts(
((join(warnings
((where({_._1}(isEqualTo({_._1}
((join(debits
((where({_._1}(isEqualTo({_._1}
""map({((x,y,z)(=>(DataPoint(Vector(x._2,(y._2,(y._3),
(((((((((((((((((((((((((((((if((z._2(>(X)(1(else(0)(}

//"run"regression"with"dimensionality"3"for"40"iterations
val(weights:(Vector(=(logRegression(3,(dataPoints,(40)

Unify data and
programming models in
a declarative abstraction.

SQL for extracting
enterprise data from
databases.

General-purpose
programming for feature
extraction and
normalization.

Statistical libraries for
advanced analysis.

16

Scala: functional and object-oriented JVM language,
excellent basis for domain-specific language
development. Coolest kid in the block ☺

Feels like a scripting language, but is not restricted
to a fixed data model like Pig, Hive, etc.

Scala’s extensible compiler architecture is a good
match for implementing optimizers.

First step for
declarative
analytics

17

Step 2: Optimize

(a) Complex Plan Diagram (b) Reduced Plan Diagram

Figure 2: Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the
coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns: The plan diagrams exhibit a variety
of intricate tessellated patterns, including speckles,
stripes, blinds, mosaics and bands, among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular – a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a
few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram does not show a corre-
sponding monotonic behavior.5 Sometimes, the non-
monotonic behavior arises due to a change in plan,
perhaps understandable given the restricted search
space evaluated by the optimizer. But, more surpris-
ingly, we have also encountered situations where a
plan shows such behavior even internal to its optimal-
ity region.

5Our query setup is such that in addition to the result cardinality mono-
tonically increasing as we travel outwards along the selectivity axes, the
result tuples are also supersets of the previous results.

Validity of PQO: A rich body of literature exists on para-
metric query optimization (PQO) [1, 2, 7, 8, 3, 4, 10,
11, 12]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan – the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold true, even approximately, in the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within the entire region enclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately for reduced plan diagrams.

1.1 Organization

The above effects are described in more detail in the re-
mainder of this paper, which is organized as follows: In
Section 2, we present the Picasso tool and the testbed en-
vironment. Then, in Section 3, the skew in the plan space
distribution, as well as techniques for reducing the plan set
cardinalities, are discussed. The relationship to PQO is ex-
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

Data characteristics change

D
at

a
ch

ar
ac

te
ris

tic
s

ch
an

ge

Each color is a differently written
program that produces the same result but has very
different performance depending on small changes
in the data set and the analysis requirements

Query optimizers: the
enabling technology for SQL
data warehousing and BI

Successful industrial
application of artificial
intelligence

Currently, no other system
can optimize non-relational
data analysis programs.

18

Peeking into the Optimization of
Data Flow Programs with MapReduce-style UDFs

StratoSphere
Above the Clouds

Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald,
Kostas Tzoumas, Volker Markl, Johann-Christoph Freytag

Stratosphere is a joint project by TU Berlin, HU Berlin, and HPI Potsdam and
 funded as DFG research unit FOR1306 with additional support from HP and IBM.

Stratosphere
http://www.stratosphere.eu
08.04.2013

0 1 2 3 4 5 6 7 8

CREATE VIEW revenue (supplier_no, total_revenue) AS VIEW

SELECT l_suppkey, SUM(l_extendedprice * (1 - l_discount))
 FROM lineitem FROM

 WHERE

 l_shipdate >= 'DATE' AND
 l_shipdate < DATE 'DATE' + INTERVAL '3' MONTH
 GROUP BY l_suppkey;

SELECT s_suppkey, s_name, s_address, s_phone, total_revenue
 FROM supplier, revenue FROM

 WHERE s_suppkey = supplier_no;

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 4 5 6 7 8

TPC-H Query 15 as PACT ProgramMotivation: Operator Reordering
• Data !ow programming is a popular abstraction for complex analytics

• Diversity of data and tasks requires user-de"ned functions

• Operator order has signi"cant impact on execution performance

• Reordering UDF operators requires knowlegde of UDF properties

UDF Code Analysis
aggregateproject

Read Set

Write Set Out-Card Bounds

Prerequisites:

• Static Code Analysis Framework provides

 Control-Flow, Def-Use, Use-Def lists

• Fixed API to access records

Extracted Information:

• Field sets track read and write accesses on records

• Upper and lower output cardinality bounds

Safety:

• All record access instructions are detected

• Supersets of actual Read/Write sets are returned

• Supersets allow fewer but always safe transformations

Data Flow Transformations

Physical Optimization Parallel Execution

Execution Plan Selection:

• Chooses execution strategies for 2nd-order functions

• Chooses shipping strategies to distribute data

• Strategies known from parallel databases

Interesting Properties:

• Sorting, Grouping, Partitioning

• Property preservation reasoning with write sets

Cost-based Plan Selection:

• Exploits UDF annotations for size estimates

• Cost model combines network, disk I/O and CPU costs

Reorder Conditions:

1. No Write-Read / Write-Write con!icts on record "elds

 • Similar to con!ict detection in optimistic concurrency control

2. Preservation of groups for grouping operators

 • Groups must remain unchanged or be completely removed

Enumeration Algorithm:

• Descents data !ow recursively top-down

• Checks reorder conditions and switches successive operators

Supported Transformations:

• Filter push-down

• Join reordering

• Invariant group transformations

• Non-relational operators are integrated

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8
0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

filter

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Details in [HPS+12] and [HKT12]

Details in [HPS+12]

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

Local Forward

Local Forward

Local Forward

Partition

Local Forward

Partition

Local Forward

Details in [BEH+10] Details in [BEH+10] and [WK09]

Execution Engine:

• Massively parallel execution of

 DAG-structured data !ows

• Sequential processing tasks

• Synchronous communication

 (In-memory and network)

Runtime Operators:

• Implemented as sequential

 processing tasks

• Call UDFs

Node 1 Node 2 Node 3

0 1 2 3 44 5 6 7 8

2nd-order
function

...

Key Part Value Part

MAP REDUCE CROSS MATCH COGROUP

UDF
1st-order function

...

Input Data Output DataIndependent
Data Subsets

Context: Pact Programming Model

Pact Operator

5
6
7
8

l_suppkey

l_shipdate
l_discount
l_extendedprice

0
1
2
3

s_suppkey
s_name
s_address
s_phone

05

5

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

05

5

5

5 0

5

5 0

[WK09] Warneke, Kao,
 "Nephele: E#cient Parallel Data Processing in the Cloud", MTAGS '09

[BEH+10] Battré, Ewen, Hueske, Kao, Markl, Warneke,
 "Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale Analytical Processing", SOCC '10

[HPS+12] Hueske, Peters, Sax, Rheinländer, Bergmann, Krettek, Tzoumas,
 "Opening the Black Boxes in Data Flow Optimization", PVLDB 5(11) '12

[HKT12] Hueske, Krettek, Tzoumas,
 "Enabling Operator Reordering in Data Flow Programs Through Static Code Analysis", XLDI Workshop '12

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll/ Coll

$r5 = r1.getField(8)8)
$r6 = r0.date_lb
$i0 = $r5.compareTo($r6)o($r6)
if $i0 < 0 goto 1

$r9 = r1.getField(8)8)
$r10 = r0.date_ub
$i1 = $r9.compareTo($r10)
if $i1 >= 0 goto 1

r2.collect(r1)

1: return

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll

$d0 = $d0 = r1.getField(6)
r0.extendedprice = $d0 $d0
$d1 = $d1 = r1.getField(7)
r0.discount = $d1

$r7 = r0.revenue // PactRecord
$d2 = r0.extendedprice
$d3 = r0.discount
$d4 = 0 - $d3
$d5 = $d2 * $d4
$r7.setValue($d5)

r1.setNull(6))
r1.setNull(7)
r1.setNull(8)

$r8 = r0.revenue
r1.setField(4, $r8)
r2. 1) collect(r1)

r0 = this
r1 = @parameter0 // Iterator/ Iter/ Iterter0 /
r2 = @parameter1 // Collector/ Coll/ Collter1 /

r3 = r1.next()
d0 = rd0 = r3.getField(4)))

goto 2

1: r3 = r1.next()
$d1 = $d1 = r3.getField(4)
d0 = d0 + $d1

2: $z0 = r1.hasNext()
if $z0 != 0 goto 1

r3.setField(4, d0)4, d0)

r2.collect(r3)

[0,1][0,1] [0,1][0,1] [0,1][0,1]et Ou

Peeking into the Optimization of
Data Flow Programs with MapReduce-style UDFs

StratoSphere
Above the Clouds

Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald,
Kostas Tzoumas, Volker Markl, Johann-Christoph Freytag

Stratosphere is a joint project by TU Berlin, HU Berlin, and HPI Potsdam and
 funded as DFG research unit FOR1306 with additional support from HP and IBM.

Stratosphere
http://www.stratosphere.eu
08.04.2013

0 1 2 3 4 5 6 7 8

CREATE VIEW revenue (supplier_no, total_revenue) AS VIEW

SELECT l_suppkey, SUM(l_extendedprice * (1 - l_discount))
 FROM lineitem FROM

 WHERE

 l_shipdate >= 'DATE' AND
 l_shipdate < DATE 'DATE' + INTERVAL '3' MONTH
 GROUP BY l_suppkey;

SELECT s_suppkey, s_name, s_address, s_phone, total_revenue
 FROM supplier, revenue FROM

 WHERE s_suppkey = supplier_no;

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 4 5 6 7 8

TPC-H Query 15 as PACT ProgramMotivation: Operator Reordering
• Data !ow programming is a popular abstraction for complex analytics

• Diversity of data and tasks requires user-de"ned functions

• Operator order has signi"cant impact on execution performance

• Reordering UDF operators requires knowlegde of UDF properties

UDF Code Analysis
aggregateproject

Read Set

Write Set Out-Card Bounds

Prerequisites:

• Static Code Analysis Framework provides

 Control-Flow, Def-Use, Use-Def lists

• Fixed API to access records

Extracted Information:

• Field sets track read and write accesses on records

• Upper and lower output cardinality bounds

Safety:

• All record access instructions are detected

• Supersets of actual Read/Write sets are returned

• Supersets allow fewer but always safe transformations

Data Flow Transformations

Physical Optimization Parallel Execution

Execution Plan Selection:

• Chooses execution strategies for 2nd-order functions

• Chooses shipping strategies to distribute data

• Strategies known from parallel databases

Interesting Properties:

• Sorting, Grouping, Partitioning

• Property preservation reasoning with write sets

Cost-based Plan Selection:

• Exploits UDF annotations for size estimates

• Cost model combines network, disk I/O and CPU costs

Reorder Conditions:

1. No Write-Read / Write-Write con!icts on record "elds

 • Similar to con!ict detection in optimistic concurrency control

2. Preservation of groups for grouping operators

 • Groups must remain unchanged or be completely removed

Enumeration Algorithm:

• Descents data !ow recursively top-down

• Checks reorder conditions and switches successive operators

Supported Transformations:

• Filter push-down

• Join reordering

• Invariant group transformations

• Non-relational operators are integrated

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8
0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

filter

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Details in [HPS+12] and [HKT12]

Details in [HPS+12]

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

Local Forward

Local Forward

Local Forward

Partition

Local Forward

Partition

Local Forward

Details in [BEH+10] Details in [BEH+10] and [WK09]

Execution Engine:

• Massively parallel execution of

 DAG-structured data !ows

• Sequential processing tasks

• Synchronous communication

 (In-memory and network)

Runtime Operators:

• Implemented as sequential

 processing tasks

• Call UDFs

Node 1 Node 2 Node 3

0 1 2 3 44 5 6 7 8

2nd-order
function

...

Key Part Value Part

MAP REDUCE CROSS MATCH COGROUP

UDF
1st-order function

...

Input Data Output DataIndependent
Data Subsets

Context: Pact Programming Model

Pact Operator

5
6
7
8

l_suppkey

l_shipdate
l_discount
l_extendedprice

0
1
2
3

s_suppkey
s_name
s_address
s_phone

05

5

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

05

5

5

5 0

5

5 0

[WK09] Warneke, Kao,
 "Nephele: E#cient Parallel Data Processing in the Cloud", MTAGS '09

[BEH+10] Battré, Ewen, Hueske, Kao, Markl, Warneke,
 "Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale Analytical Processing", SOCC '10

[HPS+12] Hueske, Peters, Sax, Rheinländer, Bergmann, Krettek, Tzoumas,
 "Opening the Black Boxes in Data Flow Optimization", PVLDB 5(11) '12

[HKT12] Hueske, Krettek, Tzoumas,
 "Enabling Operator Reordering in Data Flow Programs Through Static Code Analysis", XLDI Workshop '12

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll/ Coll

$r5 = r1.getField(8)8)
$r6 = r0.date_lb
$i0 = $r5.compareTo($r6)o($r6)
if $i0 < 0 goto 1

$r9 = r1.getField(8)8)
$r10 = r0.date_ub
$i1 = $r9.compareTo($r10)
if $i1 >= 0 goto 1

r2.collect(r1)

1: return

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll

$d0 = $d0 = r1.getField(6)
r0.extendedprice = $d0 $d0
$d1 = $d1 = r1.getField(7)
r0.discount = $d1

$r7 = r0.revenue // PactRecord
$d2 = r0.extendedprice
$d3 = r0.discount
$d4 = 0 - $d3
$d5 = $d2 * $d4
$r7.setValue($d5)

r1.setNull(6))
r1.setNull(7)
r1.setNull(8)

$r8 = r0.revenue
r1.setField(4, $r8)
r2. 1) collect(r1)

r0 = this
r1 = @parameter0 // Iterator/ Iter/ Iterter0 /
r2 = @parameter1 // Collector/ Coll/ Collter1 /

r3 = r1.next()
d0 = rd0 = r3.getField(4)))

goto 2

1: r3 = r1.next()
$d1 = $d1 = r3.getField(4)
d0 = d0 + $d1

2: $z0 = r1.hasNext()
if $z0 != 0 goto 1

r3.setField(4, d0)4, d0)

r2.collect(r3)

[0,1][0,1] [0,1][0,1] [0,1][0,1]et Ou

Peeking into the Optimization of
Data Flow Programs with MapReduce-style UDFs

StratoSphere
Above the Clouds

Fabian Hueske, Mathias Peters, Aljoscha Krettek, Matthias Ringwald,
Kostas Tzoumas, Volker Markl, Johann-Christoph Freytag

Stratosphere is a joint project by TU Berlin, HU Berlin, and HPI Potsdam and
 funded as DFG research unit FOR1306 with additional support from HP and IBM.

Stratosphere
http://www.stratosphere.eu
08.04.2013

0 1 2 3 4 5 6 7 8

CREATE VIEW revenue (supplier_no, total_revenue) AS VIEW

SELECT l_suppkey, SUM(l_extendedprice * (1 - l_discount))
 FROM lineitem FROM

 WHERE

 l_shipdate >= 'DATE' AND
 l_shipdate < DATE 'DATE' + INTERVAL '3' MONTH
 GROUP BY l_suppkey;

SELECT s_suppkey, s_name, s_address, s_phone, total_revenue
 FROM supplier, revenue FROM

 WHERE s_suppkey = supplier_no;

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 4 5 6 7 8

TPC-H Query 15 as PACT ProgramMotivation: Operator Reordering
• Data !ow programming is a popular abstraction for complex analytics

• Diversity of data and tasks requires user-de"ned functions

• Operator order has signi"cant impact on execution performance

• Reordering UDF operators requires knowlegde of UDF properties

UDF Code Analysis
aggregateproject

Read Set

Write Set Out-Card Bounds

Prerequisites:

• Static Code Analysis Framework provides

 Control-Flow, Def-Use, Use-Def lists

• Fixed API to access records

Extracted Information:

• Field sets track read and write accesses on records

• Upper and lower output cardinality bounds

Safety:

• All record access instructions are detected

• Supersets of actual Read/Write sets are returned

• Supersets allow fewer but always safe transformations

Data Flow Transformations

Physical Optimization Parallel Execution

Execution Plan Selection:

• Chooses execution strategies for 2nd-order functions

• Chooses shipping strategies to distribute data

• Strategies known from parallel databases

Interesting Properties:

• Sorting, Grouping, Partitioning

• Property preservation reasoning with write sets

Cost-based Plan Selection:

• Exploits UDF annotations for size estimates

• Cost model combines network, disk I/O and CPU costs

Reorder Conditions:

1. No Write-Read / Write-Write con!icts on record "elds

 • Similar to con!ict detection in optimistic concurrency control

2. Preservation of groups for grouping operators

 • Groups must remain unchanged or be completely removed

Enumeration Algorithm:

• Descents data !ow recursively top-down

• Checks reorder conditions and switches successive operators

Supported Transformations:

• Filter push-down

• Join reordering

• Invariant group transformations

• Non-relational operators are integrated

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8
0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7 8

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

filter

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8
Details in [HPS+12] and [HKT12]

Details in [HPS+12]

REDUCE
Sort

MAP
Pipeline

MAP
Pipeline

MATCH
Hybrid-Hash

COMBINE
Part-Sort

lineitem

supplier

output

Local Forward

Local Forward

Local Forward

Partition

Local Forward

Partition

Local Forward

Details in [BEH+10] Details in [BEH+10] and [WK09]

Execution Engine:

• Massively parallel execution of

 DAG-structured data !ows

• Sequential processing tasks

• Synchronous communication

 (In-memory and network)

Runtime Operators:

• Implemented as sequential

 processing tasks

• Call UDFs

Node 1 Node 2 Node 3

0 1 2 3 44 5 6 7 8

2nd-order
function

...

Key Part Value Part

MAP REDUCE CROSS MATCH COGROUP

UDF
1st-order function

...

Input Data Output DataIndependent
Data Subsets

Context: Pact Programming Model

Pact Operator

5
6
7
8

l_suppkey

l_shipdate
l_discount
l_extendedprice

0
1
2
3

s_suppkey
s_name
s_address
s_phone

05

5

REDUCE
aggregate

lineitem

supplier

output

MAP
filter

MAP
project

MATCH
join

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 80 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 80 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 44 5 6 7 8

0 1 2 3 44 5 6 7 8

05

5

5

5 0

5

5 0

[WK09] Warneke, Kao,
 "Nephele: E#cient Parallel Data Processing in the Cloud", MTAGS '09

[BEH+10] Battré, Ewen, Hueske, Kao, Markl, Warneke,
 "Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale Analytical Processing", SOCC '10

[HPS+12] Hueske, Peters, Sax, Rheinländer, Bergmann, Krettek, Tzoumas,
 "Opening the Black Boxes in Data Flow Optimization", PVLDB 5(11) '12

[HKT12] Hueske, Krettek, Tzoumas,
 "Enabling Operator Reordering in Data Flow Programs Through Static Code Analysis", XLDI Workshop '12

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll/ Coll

$r5 = r1.getField(8)8)
$r6 = r0.date_lb
$i0 = $r5.compareTo($r6)o($r6)
if $i0 < 0 goto 1

$r9 = r1.getField(8)8)
$r10 = r0.date_ub
$i1 = $r9.compareTo($r10)
if $i1 >= 0 goto 1

r2.collect(r1)

1: return

r0 = this
r1 = @parameter0 // Record/ Reco/ Reco
r2 = @parameter1 // Collector/ Coll/ Coll

$d0 = $d0 = r1.getField(6)
r0.extendedprice = $d0 $d0
$d1 = $d1 = r1.getField(7)
r0.discount = $d1

$r7 = r0.revenue // PactRecord
$d2 = r0.extendedprice
$d3 = r0.discount
$d4 = 0 - $d3
$d5 = $d2 * $d4
$r7.setValue($d5)

r1.setNull(6))
r1.setNull(7)
r1.setNull(8)

$r8 = r0.revenue
r1.setField(4, $r8)
r2. 1) collect(r1)

r0 = this
r1 = @parameter0 // Iterator/ Iter/ Iterter0 /
r2 = @parameter1 // Collector/ Coll/ Collter1 /

r3 = r1.next()
d0 = rd0 = r3.getField(4)))

goto 2

1: r3 = r1.next()
$d1 = $d1 = r3.getField(4)
d0 = d0 + $d1

2: $z0 = r1.hasNext()
if $z0 != 0 goto 1

r3.setField(4, d0)4, d0)

r2.collect(r3)

[0,1][0,1] [0,1][0,1] [0,1][0,1]et Ou

Use a combination of compiler and
database technology to lift optimization
beyond relational algebra. Derive
properties of user-defined functions via
code analysis and use these to mimic a
relational database optimizer.

19

Step 3:
Execute

MapReduce Impala, ... Stratosphere

Text ✔ ✔ ✔

Aggregation ✔ ✔ ✔

ETL ✔ ✔ ✔

SQL Hive is too
slow

✔ ✔

Advanced
analytics

Mahout is slow
and low level

Madlib is
too slow

✔

map
reduce

one pass
dataflow

many pass
dataflow

A fast, massively parallel
database-inspired backend.

Truly scales to disk-
resident large data sets.

Built-in support for iterative
programs: predictive and
advanced analytics (machine
learning, graph processing,
stats) are all iterative.

20

Stratosphere is an award-winning open-source platform:
15 man-years of R&D,150k LOC, 3 million € behind it.

Stratosphere is the only Hadoop-compatible next-
generation big data analytics platform developed in
Europe that you can download and use right now.

HP Open
Innovation

Award

IBM Faculty
Award

21

Hadoop storage and cluster management: HDFS, Yarn

Hadoop
MapReduce,

Impala, ...

M
on

ito
ri

ng
 t

oo
ls

, e
.g

.,
H

ue
Visualization and reporting tools, e.g., Datameer

Compiler and optimizer

Runtime engine

Stratosphere
Sk

y
in

 S
ca

la

Sk
y

in
 Ja

va
Other HLLs:

SQL, R, ...

22

www.stratosphere.eu/
downloads

http://www.stratosphere.eu/downloads
http://www.stratosphere.eu/downloads
http://www.stratosphere.eu/downloads
http://www.stratosphere.eu/downloads

23

www.stratosphere.eu/quickstart

http://www.stratosphere.eu/quickstart
http://www.stratosphere.eu/quickstart

24

val(input(=(TextFile(textInput)

val(words(=(input
"".flatMap(

{(line(=>(line.split(“(“)(}

val(counts(=(words
((.groupBy(
((((((({(word(=>(word(}
((.count()(

val(output(=(counts
.write"(wordsOutput,
((((((((RecordDataSinkFormat()()

val(plan(=(new(ScalaPlan(Seq(output))

Help us shape the future of
Big Data and the
Stratosphere platform!

Visit
www.github.com/stratosphere
www.stratosphere.eu

Contact kostas.tzoumas@tu-berlin.de

We are looking for contributions and pilot customers:
� github.com/stratosphere/stratosphere/wiki/Starter-Jobs
� Try out Stratosphere and give us feedback
� Work with us to implement your use case

Tweet #StratoSummit

http://www.github.com/stratosphere
http://www.github.com/stratosphere
http://www.stratosphere.eu
http://www.stratosphere.eu
mailto:kostas.tzoumas@tu-berlin.de
mailto:kostas.tzoumas@tu-berlin.de
https://github.com/stratosphere/stratosphere/wiki/Starter-Jobs
https://github.com/stratosphere/stratosphere/wiki/Starter-Jobs

